PEANUT実験 - これからの乾板実験の例 -

佐藤 修 (名古屋大) 2007年3月17日フレーバー物理研究会

PEANUT実験

Petit Exposure At NeUTrino beamline

 ニュートリノ反応断面積の測定 (正・反)ミューオンニュートリノ CC、NC (正・反)電子ニュートリノ CC、NC

➤ ニュートリノ振動実験OPERAの解析のリハーサル。 ニュートリノ反応の理解、特にNC反応の場合。

- FNAL NuMI beam
- OPERAと同じ構造のECCブリック
 - →反応検出、電子同定。 荷電粒子放出角測定。 荷電粒子運動量測定。
- MINOS 前置検出器 → ミューオン同定

The NuMI beam

- ★ 120 GeV protons
- \star 8.7µs spill time
- \star 1.9 s cycle time
- ★ 0.3 MW on target

★ 2.5x10¹³ protons/spill
★ 2.5x10²⁰ protons/year

PEANUT検出器の位置で反応する ニュートリノエネルギースペクトラム

4

ECCの構造 (OPERAと同等構造)

SFT(Scintillation Fiber Tracker)

45rpm

DONUT実験の再利用
SFTとECCを交互に挟んだ構造
ECC中で起きるニュートリノ反応 点をSFTでガイドする

SFT

最大48個挿入可

50cm

Image Intensider

50cm

Wall (ECCの為の補助台

MINOS Hall (地下105m)

PEANUT検出器の設置

ムの拡がり 約2m以上

PF

MINOS前置検出器

.

MINOS Hall (地下105m)

CAUTION

Rock Muon: 1~2/cm^2/day

CAUTION

ニュートリノ反応からの荷電粒子の運動量測定(Donut 実験)

NETSCAN

2. After rejection of penetrated tracks.

All of tracks recorded in 5X5mm² area (10⁵ tracks / cm²)

NETSCAN

4. Convergent tracks within 5μ m

3. After rejection oflow momentum tracks

How to measure the momentum

If angular measurement error = 0,

$$\frac{\Delta p}{p} = \frac{100 \%}{\sqrt{2n}}$$

2n : (Number of plates -1) x (2 projections) $n = 50 \rightarrow \Delta p/p = 10 \%$

Plate by plate signal.

Determination of $p\beta$

- Least χ^2 fitting
- $p\beta$: free parameter

運動量測定効率の角度依存性。

498 / 532

306 / 368

Comparison of the measured momentum to the Spectrometer (Muon)

15

Momentum measurement of 2ry charged particles emitted from ν interactions

2388 tracks emitted from 578 neutrino interactions => 1788 tracks were tried for measuring the momentum by MCS

# of Event	Tried Tracks	Measured tracks	Rate	
487	1788	1487	83.2%	

	Downstream	Bad connection by slip	Stop	Failed data taking	Total
Not tried	289	69	70	122	550

Comparison with MC(P) in each module

Comparison with MC (Pt) in each module

T.Toshito(Nagoya Univ.) Electromagnetic shower Test exp. @ CERN In analysis

(in study)

陽子識別:dE/dx測定

乳剤層中の銀粒子密度を測定する ことでdE/dxを測定する

UTSが乳剤層を16層に分割し画像情報を読み込むときに、各々の層でヒット数の和。

左図の飛跡の場合

テスト照射:1.2GeV/cのπ、p MSCの乾板29枚でのdE/dx測定結果

²² T.Toshito et al., N.I.M. , A **516**, 436-439 (2004).

PEANUT実験の経過と現状

- 2005年10月18日 SFT稼動開始。
- 2005年12月23日 ECC160個生産終了。
 - ECC123個の照射を完了。
 - 50個はヨーロッパへ、73個は名古屋へ
 - 24個はニュートリノ照射を継続。
- 2006年2月28日 ビームシャットダウン
- 2006年3月15日 24個(ニュートリノ反応700程度 /brick)を回収。
- 2006年3月20日 解析開始
 すぐに1st イベント検出(2006年3月23日)
- 2006年12月23日 SUTSスキャン開始。

解析方針

1、旧来式

後方支援トラッカー(SFT)によるプリディクションを元に最下流の原子 核乾板の対応する小面積(SFTの分解能程度)をスキャン。 その後そのトラックを反応点まで追い上げる。 数十例のニュートリノ反応検出した時点で方針(2)へ変更。

2、現行/将来式

ひとまずトラッカーの情報は無視しておく。

全原子核乾板プレートの全面積をスキャンし全飛跡をピックアップする。 飛跡再構成、反応点検出はコンピュータワークで行う。

その後必要とするトラッカーの情報と照らし合わせる。

特にミューオンIDなど。

特徴:

- → SFTの検出効率等に影響されないニュートリノ反応検出。
- → 将来的な観点ではECCを置くだけで各種物理解析ができる

Donut の時とPeanut でのスキャン面積の比較。 約500倍の面積。

Scanning Area

Stage Coordinate

スキャンのマシンタイム(BL112)現状

現状

約1億本のトラックセグメント / Plate

飛跡再構成
今までは数ミリ * 数ミリで行ってきた。
数ミリ四方のデータで位置の精度0.3ミクロンでアライメントできている事は証明済み。
CHORUS 実験 約20万ニュートリノ反応。
→ ニュートリノ振動(μ からτ)解析
→ チャーム生成断面積測定など。

DONUT 実験

約600ニュートリノ反応。 → τニュートリノ反応発見。 → τニュートリノ反応断面積測定。

大面積のデータを切り出して飛跡再構成後いくつかニュートリノ反応を 検出している。これから大面積のアライメントをシステマティックにやる。

BL118 VTX_x

BL118 e & *Y*_y

まとめ

全面スキャンによるトラック読み出しは順調。

スキャンスピード SUTS自身のスペック 40cm²/h 長期運用時の実効速度 1 m²/month/1SUTS (デッドタイム込み) 1 ECC chamber /1.5month/1SUTS 高速化 次期SUTSのスペック 100-200 cm²/h スキャンするプレートを1枚、2枚おきあるい片面のみのスキャン にするなどする事で 4-8 ECC /1 months/1SUTS。 50-100 ECC /1year/1SUTS ← 全Peanut ECC スキャン可能。

現在、飛跡再構成のプログラムを大面積用に改良中。

2007年の夏に2nd Run を予定。

展望

ECC はコンパクトな検出器でどこにでも置ける。

電子同定 (サブGeV 以上)

荷電粒子の運動量測定(運動量精度 dP/P 10%ぐらいは到達可能)

ミューオン同定(ECCを並べて物質量を稼げば可能。

であるが他のミューオンすペクトロメーターとハイブリットの方が楽。) アプリケイション

[1] LHC の衝突点からくるニュートリノを捕まえる。

rニュートリノのマグネティックモーメント測定。

[2] 数GeV 領域でのニュートリノ反応断面積測定。

正・反ミューオンニュートリノ CC・NC

正・反電子ニュートリノ CC・NC

など多数。

スキャン後の解析はカウンター実験と同じ!(もちろんシミュレイションできます。) 平方メートルの全面読み出しがリーズナブルな時間(a few weeks) でできる! 位置分解能、0.3ミクロンの精度で飛跡再構成できる!

- → 我々では考えつかない研究対象が存在しているはず。
- → 共同研究募集 !

The end