

(T2K: Tokai to Kamioka LBL Neutrino Oscillation Experiment)

Ken Sakashita for the T2K collaboration 2007/Mar/17,特定領域「フレーバー物理」研究会

Introduction

Three flavor mixing

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & \underline{s_{13}}e^{-i\delta} \\ 0 & 1 & 0 \\ \underline{-s_{13}}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$$

 $\Delta m_{12}^2 + \Delta m_{23}^2 + \Delta m_{31}^2 = 0$

- 独立なパラメータ:
 - 2つの質量二乗差、3つの混合角と1つの位相(δ)
- CP violationには $\theta_{13} \neq 0$ が必要
- θ_{13} と δ の値はまだ有限な値として測られていない

 $\Delta m_{12}^2 \sim 8 \times 10^{-5}$, $\sin^2(2\theta_{12}) = 0.86^{+0.03}_{-0.04}$ (KamLAND + solar v)

 $\Delta m_{23}^2 \sim (2.2 \sim 3.0) \times 10^{-3}$, $\sin^2(2\theta_{23}) > 0.92$ (SK atm.-v,K2K,MINOS)

- θ_{13} limit
- CHOOZ experiment
 - Reactor / $\overline{\nu_e}$ disappearance experiment

T2K実験 (J-PARC E11)

- Motivation
 - 残されたパラメータ: θ₁₃とδの測定
 - パラメータの精密測定
 - θ_{23} はmaximal mixingか否か

<u>T2K(1st-phase)の主な目的</u>

neutrino flavor mixingの解明

- ✓ discover a finite θ_{13} by observing v_e appearance
 - T2K-Iでθ13を有限な値として測定 → δの測定(CPV) in T2K 2nd-phase
- \checkmark precisely measure θ_{23} , Δm^2_{23}

Narrow-band intense neutrino beam

- ✔ ピークを振動確率最大の所に
 - x 2~3 intense than OA 0°
- ✔ 少ないhigh energy v
 - backgroundを減らす
- $\checkmark \ \nu_{e}$ ~0.4% at ν_{μ} peak

ニュートリノエネルギーの再構成

- E_v ~ sub-GeV → 準弾性散乱反応(CCQE)が主な相互作用
 - $v + n \rightarrow \mu + p$

Neutrino beam line

- 0.75 MW (3x10¹⁴ pot/spill)
- 超伝導電磁石を用いてSKの方向へ
- _ グラファイトターゲット
- 電磁ホーン(320kA) x 3台
- Requirement on the direction : < 1 mrad
 - Δm²₂₃の系統誤差を統計誤差
 よりも小さく
 - target上のproton beamの位置精度
 < 1mmに対応 → targetの保護
- GPSを用いた機器アライメント + secondary µとv自身の方向のモニター

Near detector @ 280m

On-axis detector

 $(\delta \sim 1 \text{ mrad})$

- 鉄/シンチレータ

block x 14台

- vビームの方向を測定

Off-axis detectors

- flux, Evを測定 (v_µ, v_µ, v_e)
- v cross section(non-QE/QE)の測定
 - background見積もり
- UA1 magnet(0.2T), Tracker(FGD,TPC), Pi0 detector, EM calorimeter

entries entries

10000

8000

6000

4000

2000

-450 cm

11

FarDetector (SK)

Super Kamiokande

- 神岡鉱山内の地下1kmに設置
- 50kトン水チェレンコフ検出器
 - 有効体積 22.5 kトン
- 約10000本の20inch PMTs (内側)
- 約2000本のanti-counter PMTs (外側)
- e-like(shower ring) / µ-likeの識別

物理感度(T2K-I):(θ₂₃,Δm²₂₃)

θ_{13} in T2K-I

• v_e appearance

 $P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin\left[\frac{1.27\Delta m_{31}^{2} [\text{eV}^{2}]L[\text{km}]}{E[\text{GeV}]}\right]$

(Simplified Oscillation Prob.)

- signal : $v_e + n \rightarrow e^- + p$
 - single ring electron
- background
 - v_{μ} NC1 π^{0} events, in which π^{0} is misidentified as e⁻
 - apply e/π separation cuts
 - beam intrinsic $\nu_{\rm e}$

understanding background is key issue

NC1π0 background

Expected sensitivity of θ_{13}

• > x10 improvement from CHOOZ results $sin^{2}(2\theta_{13}) = 0.008 (90\% \text{ C.L.})$ for $\delta=0$, $\Delta m^{2}_{13}=2.5x10^{-3} \text{ eV}^{2}$

To achieve T2K-I physics goals

- R_{F/N}を精度よく求める必要がある
 - $\Phi^{SK}_{exp.} = R_{F/N} \times \Phi^{ND}_{obs.}$
 - v_{μ} disappearance
 - ✓ keep syst. error less than stat. error
 - V_e appearance

✓ δ (N_{bkg.}) to be less than 10% → δ (R_{F/N}) to be less than 2~3%

$R_{F/N}$ is sensitive to kinematics of parent particle (π ,K)

- but there is no data for 30GeV proton + C

measurement of the hadron production is necessary !!

Hadron production measurement

- use 30GeV proton and the same target material (C)
- Measure $(P\pi, \theta\pi)$ distribution
 - less than 10% statistical error of each P_{π} bin and θ_{π} bin (P_{π} 200MeV/bin x 50 bins, θ_{π} 20mrad/bin x 20 bins)
- Measure π/K ratio w/ less than 10% accuracy
 - high energy ν_{μ} from Kaon decays

Need to measure the $_{0.15}$ number of K+ in the region $_{0.1}$ 1 < P(GeV/c) < 20 and $_{0.05}$ $0 < \theta(mrad) < 300$

δ (**R**_{F/N}) < 1%

CERN NA49 experiment

- 2007 run (30days) is nearly approved
- measure w/ 3 kinds of target
 - thin (~1cm, 2%), middle(10cm, 20%) and replica (90cm)
 - take data to achieve the requirements for all the target

CP violation (**δ**)の測定

- T2K-Iでθ₁₃≠0と測定された場合、T2K-IIでCPV phase(δ)の測定に
 - ✓ 厳密なP(v_µ→v_e)はδや物質効果を含むが、T2KのL=295km、小さいE_vでは物質効果は小さい
 - ✓ v_{μ} → v_{e} の数と $\overline{v_{\mu}}$ → $\overline{v_{e}}$ の数を比較してδを測定

Summary

- T2K実験
 - L=295km & $\Delta m^2_{23} \rightarrow E_v$ sub-GeV

- narrow-band intense beam w/ OAB method
- CCQE v-interaction \rightarrow possible to reconstruct E_v
- 物理感度のprospects
 - v_{μ} disappearance : $\delta(\sin^2\theta_{23}) \sim 1\%$, $\Delta m^2_{23} < 1 \ge 10^{-4} \text{ eV}^2$
 - v_e appearance : $sin^2\theta_{13} = 0.008 @ 90\%$ C.L.
 - θ₁₃ ≠ 0 → CPV phase δの測定 in T2K-II
- R_{F/N}を精度良く求めるためにhadron-production experiment が進行中

backup slides

他の013測定実験

- Reactor experiments [Double CHOOZ(フランス), RENO(韓国) ...]
 - v_e disappearance \rightarrow almost pure θ_{13} measurement

 $P(v_e \rightarrow v_e) = 1 - \sin^2 2\theta_{13} \cdot \sin^2 (1.27 \Delta m_{31}^2 L/E) + O(\Delta m_{21}^2 / \Delta m_{31}^2)$

• small deficit → systematic dominated

OUBLE

- NOvA (accelerator LBL exp.)
 - V_e appearance
 - NuMI off-axis beam (L=810km) & 30kton liquid scintillator detector
 - similar sensitivity to T2K

15.7 m, 384 cells

NOvA sensitive to matter effect

