<u>T2KKの物理的可能性</u>

an extension of the <u>T2K</u> neutrino oscillation experiment with a far detector in Korea

> 岡村直利(京大・基研) 関西セミナーハウス(2007/03/17)

> > based on hep-ph/0504061 [Phys.Lett.<u>B637</u>,266 (2006)] hep-ph/0607255 hep-ph/0611058 with 萩原薫, 泉田賢一(KEK,総研大)

T2KKの注目度 ■ 2005年11月18日、19日 ■ KIAS(韓国) http://newton.kias.re.kr/~hepph/J2K ■ 2006年07月13日、14日 ■ SNU(韓国) http://t2kk.snu.ac.kr/ ■ 2007年 夏 ■日本(?)

実施されるかは不定
 多くの人が興味を持っている。

٠		icur organici
	Ē.	J. Jeon (SNU)
	К.	K. Joo (SNL)
	ĸ.	Kaneyuki (IC
	K.	Okumura (IC

Store Haddre unter

E. J. Chun (KIAS) T. Kajita (ICRR) S. B. Kim (SNU) P. Ko (KIAS)

K. Nakamura (KEK)
K. Nishikawa (KEK)
H. Sobel (UCI)

RR)

目次

Short Review ■ 今日まで、そして、残された課題 **T2KK** ■ J-PARC, SK, and Korea ■最適地 ■ 質量階層性, CP phase, octant, - まとめ

Short Review

Parameters (3gene.) **Neutrino Physics** Neutrino Oscillation 7/9 parameters **6** parameters neutrino masses squared-differences $\bullet \, \delta m_{12}^2 \, \delta m_{13}^2 (\equiv m_3^2 - m_1^2)$ $\blacksquare m_1 m_2 m_3$ flavor mixing angles flavor mixing angles $\blacksquare \theta_{12} \ \theta_{23} \ \theta_{13}$ $\blacksquare \theta_{12} \ \theta_{23} \ \theta_{13}$ **CP** phase **CP** phase $\blacksquare \delta$ $\blacksquare \delta$ Majorana phases Majorana phases nothing $\blacksquare \phi_1 \phi_2$

 $m_3 = 0.0, sin^2 2 \theta_{12} = 1.0 @ M_Z [GeV]$ inverted hierarchy and large tan β

Effective mass of $0 \sqrt{2\beta}$ decay $\langle m_{ee} \rangle = \left| m_1 U_{e1}^2 + m_2 U_{e2}^2 e^{-i\varphi_2} + m_3 U_{e3}^2 e^{-i\varphi_3} \right|$

inverted hierarchy + large $\tan\beta + \varphi_2 \sim 0.0$ ⇔ θ_{12} : large mixing angle は量子補正由来

+ large detector in 韓国

$$\begin{aligned} \mathbf{E} \mathbf{A} \mathbf{E} \mathbf{B} \mathbf{B} (\mathbf{c} \mathbf{C} \mathbf{E} \mathbf{B}) \\ P(v_{\mu} \rightarrow v_{e}) &= 2(1+q)\sin^{2}\theta_{rct} (1+\mathbf{T})\sin^{2} \left(\frac{\Delta_{13}}{2} + \mathbf{B}\right) \\ \text{hierarchy} \qquad q &= 2\sin^{2}\theta_{atm} - 1, \qquad \Delta_{ij} = \left(\delta n_{ij}^{2}/2E\right)L \\ \mathcal{A}^{e} &= \frac{\delta U}{\Delta_{13}E} \cos^{2} 2\theta_{rct} - \frac{\Delta_{12}}{2} \frac{\sin 2\theta_{sun}}{\sin \theta_{rct}} \sqrt{\frac{1-q}{1+q}} \sin \delta_{MNS} \qquad a &= 2\sqrt{2}G_{F}En_{e} \\ \approx \left(0.37 \frac{\pi}{\Delta_{13}} \frac{L}{1000 \text{km}} - \left[0.29 \sqrt{\frac{1-q}{1+q}} \left(\frac{0.10}{\sin^{2} 2\theta_{rct}}\right)^{1/2} \sin \delta_{MNS}\right] \frac{|\Delta_{13}|}{\pi} \\ \mathcal{B}^{e} &= -\frac{aL}{4E} \cos 2\theta_{rct} + \frac{\Delta_{12}}{2} \left(\frac{\sin 2\theta_{sun}}{2\sin \theta_{rct}} \sqrt{\frac{1-q}{1+q}} \cos \delta_{MNS} - \sin^{2} \theta_{sun}\right) \quad \textbf{-1st maximum} \\ \approx \left(0.29 \frac{L}{1000 \text{km}}\right) \left[0.15 \sqrt{\frac{1-q}{1+q}} \left(\frac{0.10}{\sin^{2} 2\theta_{rct}}\right)^{1/2} \cos \delta_{MNS} - 0.015 \right] \frac{|\Delta_{13}|}{\pi} \\ \text{"matter effect" \Leftrightarrow "base-line length" hep-ph/0602115 \end{aligned}$$

fiducial volume (100% efficiency) SK : 22.5 kton Korea : 100 kton

■ 露出時間

- 5年(10^{21} POT/year ,0.8MW), T2K-I running time
- anti-neutrino は使わない

■ 基線長と角度

- SK: L=295km with $\theta=2.5^{\circ}$ or 3.0°
- KR: L=1000-1200 km with $\theta=(0.5^{\circ} \sim 3.0^{\circ}) / 0.5^{\circ}$ step

韓国での角度は距離とSKでの角度に依存する

Event Number

CCQE event

- easy reconstruct the neutrino energy
- easy distinguish, *e*-like, μ -like
- ビン切り
 - ビン幅: 200MeV (Fermi motion 80MeV)
 - 領域 (#event > 10)
 - 0.4 5.0 GeV for μ -like (SK/Korea)
 - 0.4 1.2 GeV for *e*-like (SK)
 - 0.4 2.8 GeV for *e*-like (Korea)

バックグラウンド

- beam contaminationsは含む (another flavor in beam)
- NC backgroundは含まない (π^0 !γγ ⇔ *e*-shower)

入力値

sin²2θ = 0.83±0.07, δm² = (8.2±0.6)×10⁻⁵ eV²
大気
sin²2θ = 1.00⇔0.96, δm² = 2.5×10⁻³ eV²
物質密度(不定性: ±3%)
ρ = 2.8 / 3.0 (g/cm³) (SK/Korea)

■ 太陽

その他(systematic)(不定性:±3%)
flux normalization (each species)
CCQE cross section (v/anti-v)
fiducial volume (SK / Korea)

#total parameters:16

χ^2 -rule of the game-

true : "<u>normal</u>" *fit* : "<u>inverted</u>"

true : $\sin^2 2\theta_{13} = 0.1 \Leftrightarrow \text{free} : fit$ $\delta = 0.0 \Leftrightarrow \text{free}$

$L = 1000 \text{ km and } \theta = 0.5^{\circ}$

SK 0.15 reg on 0.14 000 0.13 $\mathsf{P}(
u_{\mu}
ightarrow v_{\mathsf{e}})$ 090 0.12 180 0.11 270 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 L=295km 0.02 $sin^2 2\theta_{RCT}=0.10$ 0.01 0.00 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 $E_{\nu}(GeV)$.4 0.6

CP位相(normal hierarchy)

without anti-neutring

CP位相(inverted hierarchy)

without anti-neutring

octant

まとめ

T2KK

 T2K+ Large Detector (100kton) in Korea
 物質効果の大きさ(距離に比例)の違いが決め手 質量階層性、CP位相、octant

T2KK + 原子炉実験(Double CHOOZ)
 質量階層性 (3σ: sin²2θ₁₃ ~ 0.05)
 CP位相 (±30°: without anti-neutrino)
 Octant(0.40⇔0.60) (3σ: sin²2θ₁₃ ~ 0.12)

thank you for your attention

N.Okamura, okamura@yukawa.kyoto-u.ac.jp