最新のEMULSION SCANNING

2007.3.17 名古屋大学 中野敏行

ECC Brick

- トラッキング
 Sub-micron
- •運動量
 - MCS:~10Gev/c
- e-ID, γ detection Shower, e-pair

• dE/dx

T.Toshito(Nagoya Univ.) Electromagnetic shower Test exp. @ CERN (May2001) In analysis

Changeable Sheet

- Interface plate TT to Brick(ECC)
- Brick Tagging specially for NC-like event.

-10cm BRICK: ECC Sub-μm res. ↓ CS Doublet Gradient CS Doublet CS Doublet T.T. 2.6cm pitch

- Must be low back ground -> Doublet, Refreshed in GS
- Must be high efficiency
- Very huge Scanning load -> 5100cm²/day

Required Scanning Power for IP(CS)

	Area to	Area to be scanned		ts	Scanning area cm ² /day	
CHORUS	1mm >	1mm × 1mm × 2			20	
OPERA 1 µ	5cm×	$5 \text{cm} \times 5 \text{cm} \times 4$			2300	Total
OPERA 0 µ	10cm >	$cm \times 10 cm \times 4$ 7			2800	5100
. 1mm		0μev 1μevent 50mm	vent		100mm	
$0 \text{ cm}^2/\text{day} = 20 \text{ cm}^2/\text{hours/system}$						
~ 11SYS	stems		-			

5

Automatic Emulsion Scanning System "S-UTS 1"

Digitizing Nuclear Emulsion Films

Grain Density ~15 (/45µm), FOG>3000 grain(/view)

174969 2-20-1-1 87,120,627 Micro Track Readout

Fourfold coincidence

Reconstruction Conditions Ex.:

 $\Delta(\theta_{cs2}-\theta_{3,4}) < 0.070$ rad $\Delta(\theta_{cs1}-\theta_{cs2}) < 0.010$ rad $\Delta(r_{cs1}-r_{cs2}) < 10 \ \mu m$ + Eye Scan Reduce random coincidence of low momentum tracks (Compton electron, fog, etc.)

with Dario and Antoine

Found track in CSD

Х

Piezo driven Optics

No step and repeat image taking (follow shot method)

 Use Ultra High Speed Camera High speed CCD - Up to 3k frames per second. \rightarrow Max 90views/sec~60cm²/h L~60 µm Move objective lens along inclined axis Image taking by follow shot
 Objective lense $D \sim 50 \mu m$ - No step and repeat operation can avoid a mechanical bottleneck. Emulsion FOV displacement and Blur are canceled by moving objective Driving in constant velocity lens

LVDS Output Interface DATA Reduction : $\sim 1G$ byte/s \Rightarrow 10-100M byte/s

Pre-processing before track recognition

Subtract DC and LF component, like defocus grains. Zero suppression (Record only pixels over the threshold with address)

SUTS Track recognition board

Processing speed : >40cm²/h/board

II-XJTRIV

PRO

Track Recognition in SUTS

- 飛跡認識アルゴリズムは UTS を継承する。
- 目標処理能力は 100cm²/h (多ユニット化による並列処理を考慮)
 -×50 対物レンズとセンサーから期待されるのは60cm²/hであるが、広視野化に対処.
- •大規模 FPGAによる高並列化による高速飛跡認識を行う。

	2VP70(SUTS)) QL3060(UTS)
Logic Cell	74,448	1,584
On-die Memory	5,904kbit	N/A
On-die CPU	PPC405 × 2	N/A
Max Frequency (16bitCNT)	348 MHz	97MHz
Inter FPGA data transfer rate	40Gbit/sec	1.2Gbit/sec
Memory Band Width in FPGA	40GByte/sec	0.5GByte/sec

S-UTS Track Recognition Block diagram (revised)

SUTS block diagram

Scanning Efficiency Check

Sample : double refreshed half size OPERA film exposed cosmic rays

Base Track Efficiency

Base Track Efficiency

Base Track angle resolution

Micro track angle resolution

Lens side

Micro track angle resolution

Base Track position resolution

改良の見込み

- 繰り返し周期の短縮
 - 現状 60views/s (40cm²/h) ⇒ 90view/s (60cm²/h)
- FPGA上のコードの最適化による処理能力の向上。
- 飛跡認識パラメーターの最適化による品質の向上 - 角度分解能,アクセプタンス等,光学収差の補正
- 対物レンズの低倍率化(広視野化)による飛跡読み
 出し速度の向上。
 - ×50から×35への変更で約2倍のゲイン
 - ×25が実現すれば4倍以上のゲイン

まとめ

- 40cm²/hでの飛跡読取りを実現し、
 最低限の性能は確保。
- Efficiency ~95% @ base track (2-fold coincidence).
- Facilityを構築しつつ性能の向上
 を図っている。
- 低倍率化(広視野化)による速度 向上は非常に有望。100cm²/hも目 前。5 systemsで10000cm²/day=> PEANUT

