$K_{L} \to \pi^{0} \nu \overline{\nu}$ 実験の物理と展望

小松原 健 (KEK 素粒子原子核研究所)

特定領域「フレーバー物理の新展開」研究会 2007年3月16日 京都・関西セミナーハウス

outline: $K_L \to \pi^0 \nu \overline{\nu}$ 実験の

- •What 何を
- •Why なぜ
- Who 誰が
- Where どこで
- When いつ
- How どのようにして

outline: $K_L \to \pi^0 \nu \overline{\nu}$ 実験の

- •What 何を
- Why なぜ 物理の目的
- Who 誰が
- Where どこで
- When いつ
- How どのようにして 実験の手法

(30 slides in total)

何を、なぜ

• $K_L \to \pi^0 \nu \overline{\nu}$ 崩壊の <u>分岐比</u> を測定して 3×10^{-11} in the SM

標準模型を越える物理の フレーバー構造 を探索する。

• Direct CP violation - クォークフレーバー混合の 複素位相

標準模型 での $K \to \pi \nu \bar{\nu}$

$$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) = (5.30 \times 10^{-11}) \cdot C_{\pi \nu \overline{\nu}} \times [(\rho_0 - \rho)^2 + \eta^2]$$
$$\mathcal{B}(K_L^0 \to \pi^0 \nu \overline{\nu}) = (23.2 \times 10^{-11}) \cdot C_{\pi \nu \overline{\nu}} \times [\eta^2]$$

$$C_{\pi\nu\overline{\nu}} \equiv \left[\frac{\mathcal{B}(K^+ \to \pi^0 e^+ \nu)}{4.87 \times 10^{-2}}\right] \times \left[\frac{|V_{cb}|}{0.0415}\right]^4 \times \left[\frac{X(x_t)}{1.529}\right]^2$$

	short-distance (e.w.) contrib. to the total rate $(\Gamma - \Gamma_{no \ s.d.}) / \Gamma$	present irreducible th. error on the s.d. amplitude extracted from BR only	total BR withinSM (central value)	Theory errors for $K^+ \rightarrow \pi^+ v \overline{v} v$
$K_L \rightarrow \pi^0 \nu \nu$	> 99%	1%	3×10 ⁻¹¹	$K \rightarrow \pi \sqrt{V}$. LD Scales 13%
$K^+ \rightarrow \pi^+ \nu \nu$	88%	3%	8×10 ⁻¹¹	28%
				m_c (α_s, m_t)

Haisch, FlavLHC ('06) Buras,Gorbahn,Haisch,Nierste ('05,'06)

22%

37%

Grossman-Nir bound PLB **398**, 163 (1997)

$$\begin{aligned} r_{is} \times \frac{\Gamma(K_L \to \pi^0 \nu \bar{\nu})}{\Gamma(K^+ \to \pi^+ \nu \bar{\nu})} &= sin^2 \theta \\ \begin{array}{l} \text{isospin} \\ \text{breaking} \\ \text{correction} \end{array} & \frac{BR(K_L \to \pi^0 \nu \bar{\nu})}{BR(K^+ \to \pi^+ \nu \bar{\nu})} < \frac{\tau_{K_L}}{\tau_{K^+}} \times \frac{1}{r_{is}} = 4.371... \simeq 4.4 \\ BR(K_L \to \pi^0 \nu \bar{\nu}) < 4.4 \times UL_{90\%}(K^+ \to \pi^+ \nu \bar{\nu}) \\ \frac{1.4 \times 10^{-9}}{15\% \text{ due to}} \end{aligned}$$

15% due to	
present CKM accura	СУ

Golden Modes	Standard Model	Experiment		
$K^{+} ightarrow \pi^{+} u \overline{ u}$	$8.0^{+1.1}_{-1.1} \times 10^{-11}$	$14.7^{+13.0}_{-8.9}\times10^{-11}\underset{\text{E949}}{\text{E787}}$	< 32.2	$\times 10^{-11}$
$K_L \to \pi^0 \nu \overline{\nu}$	$2.9^{+0.4}_{-0.4} imes 10^{-11}$	$< 2.1 imes 10^{-7}$ E391a		

F. Mescia @CKM2006

Rare and CP-Violating K and B Decays in the Littlest Higgs Model with T-Parity

Monika Blanke^{*a,b*}, Andrzej J. Buras^{*a*}, Anton Poschenrieder^{*a*}, Stefan Recksiegel^{*a*}, Cecilia Tarantino^{*a*}, Selma Uhlig^{*a*} and Andreas Weiler^{*a*}

^aPhysik Department, Technische Universität München, D-85748 Garching, Germany ^bMax-Planck-Institut für Physik (Werner-Heisenberg-Institut), D-80805 München, Germany

hep-ph/0610298 JHEP 0701 (2007) 066

A.J.Buras & C.Tarantino @CKM2006

SUSY vs Little Higgs	R-pa	arity T-pa	arity
Problematic quadratic divergences in m	н ²	Little	mirror
\cdots top \cdots W,Z,γ higgs	SDS	Inggo	fermion
	SUSY	Little Higgs	
Quadratic divergences canceled by:	(different statistics) super-partners	(same statistics) heavy partners	
Coupling relationships due to:	boson-fermion symmetry	global symmetry	

•SUSY has a lot of virtues (required at M_{PP}, computable up to M_{PP}, helps GUT) but also ...a lot of parameters (~120 in MSSM)

Lack of SUSY signals at LEP constrains the MSSM parameters to be ~fine-tuned

Little Higgs models are low-energy effective theories computable up to Λ~10 TeV
Little Higgs can have less parameters(~20 in LH with T-parity) but some UV-sensitivity
T-parity makes LH well compatible with ew precision tests, without fine-tuning

Stage-1 (scientific) approved by PAC in 2006

誰が - J-PARC E14 collaboration

- 日本
 - KEK
 - Inagaki, Komatsubara, Lim, Watanabe, ...
 - 京都大学
 - Nanjo, Nomura, Sasao, ...
 - NDA
 - Matsumura, Shinkawa, ...
 - 大阪大学
 - Yamaga, Yamanaka, ...
 - 佐賀大学
 - Suzuki, Kobayashi, ...
 - 山形大学
 - Iwata, Tajima, Yoshida, ...

• 米国

- Arizona State Univ
- Univ of Chicago
- Univ. of Michigan, Ann Arbor
- ロシア
 - JINR
- ●台湾
 - National Taiwan Univ
- ●韓国
 - Pusan National Univ
 - Univ of Seoul
 - CheonBuk National Univ

[new to the J-PARC experiment]

どこで - J-PARC

2006年12月撮影

どのようにして -

1. 中性ビームライン のデザイン (Monte Carlo)

 Fast Geant4-MC to try various collimator configuration

- Comparing
 - Geant 3 with G-FLUKA (E391a)
 - Geant4
 - genuine FLUKA
 - for target/beamline simulation

• G4 full-blown simulator is ready.

- E391a 測定器を移設/改造
 - Csl calorimeter
 - 読み出し: waveform digitization
 - photon veto in the beam

E391a 測定器 の解体作業 @東カウンターホール

KTeV Csl による改善

- photon isolation
 - x8 bkg reduction

D

-10

-20

-30

-20

30

-3

30

KTeV Csl を Fermilab から借り受ける

- Fermilab Director, Dr. Oddone, visitd KEK and had a tour of E391a experiment on November 21, 2006.
- We were being told on December 1 by Dr. Oddone that "There is no reason why we can't have the KTeV CsI for E14" and he urged us to work with KEK/Fermilab to initiate the proper transfer.

Fermilab Today

Future collaborations II

出力波形 を記録する

waveform digitization of detectors

- for high performance in high rate environment
- 要求される事項:
 - Triggerable pipeline DAQ
 - Wide dynamic range: 0.1MeV 2GeV (>4 orders of magnitude)
 - <1ns time measurement</p>
 - for ~4000 channels (2576 ch for the CsI calorimeter)
 - at high performance/cost

500MHz digitization (BNL-E787 Csl endcap)

passive (in vacuum)

Waveform digitization design

• Designed by Univ of Chicago Electronics Shop

Double pulse resolution

• Can resolve 200MeV and 40MeV pulses with >20ns apart

In-beam photon detection

いつ - スケジュール (Step1 にむけて)

- JFY 2007
 - preparation of the beam line and detector upgrade
 - Design and make 100 channel system for CsI readout
 - --> Beam test at Fermilab test-beam facility
 - Test shipment of Csl crystals to Japan
- JFY 2008
 - Ship rest of the CsI crystals to Japan
 - Make rest of the boards for CsI and photon veto detectors
 - Beam survey at the end of JFY2008
- JFY 2009
 - Assemble detector
- JFY2010
 - Start experiment

まとめ:

- What 稀崩壊 $K_L \to \pi^0 \nu \overline{\nu}$
- Why 標準模型を越える物理の フレーバー構造 を探索
- Who J-PARC E14 collaboration
- Where J-PARC
- When 初期に、初めての観測を目指す = Step 1
- How

ペンシルビーム + CsIカロリメータ + waveform digitization + photon veto

