

KEKBの状況 これまでの成果 これからの展望

今後数年間→ 数ab-1のデータ

何が注目されるか?

The KEKB Collider

Fiscal Yearly Luminosity

Fiscal Yearly Luminosity

Crab Cavity

Superconducting crab cavities (1LER and 1HER) have been installed, and being tested at KEKB.

Crab Crossing

orbits of bunch head and tail

Crab OFF

H. Ikeda, et al.

Integrated Luminosity

Belle Physics Milestone

Sin2¢1 (Summer 2006)

Belle(B→J/ψ KO): sin2φ₁= 0.642 ±0.031 (sta) ±0.017 (sys) W.A.: sin2φ₁= 0.674 ±0.026

Success of B Factories

First precise test of CKM picture for CPV.

- sin $2\phi_1$ = +0.674 ± 0.026 is now a precise measurement (~4%).
- The other angles are becoming interesting.

Quark Flavor Physics Vud Vud Vus

Open Questions

- Are there new CP-violating phases ?
- Are there new right-handed currents ?
- Are there effects from new Higgs fields ?
 - Are there new flavor violation ?

Beyond CKM

dark flavor ?

Cabibbo-Kobayashi-Maskawa matrix

1) t*CP*V in $B^0 \rightarrow \phi K^0$, $\eta' K^0$, $K_s K_s K_s$ 2) t*CP*V in $B^0 \rightarrow K_s \pi^0 \gamma$ 3) $B \rightarrow \tau \nu$, $\mu \nu$, $D \tau \nu$ 4) FCNC: $B \rightarrow KII$, $K \nu \nu$ (+ distribution) 5) $\tau \rightarrow \mu \gamma$ 6) Unitarity triangle with O(1)% precision $|Vub|, \phi 3$

These are also theoretically clean.

CPV in b→s Penguin Processes

Heavy particles may be mediated in the quantum loop.

• In SM, $CPV(B^0 \rightarrow \phi Ks) = CPV(B^0 \rightarrow J/\psi Ks)$

 If a new particle carries a quantum new phase CPV(B⁰→ φKs) ≠ CPV(B⁰→ J/ψKs)

Colloquium at University of Lyubljana

New CP Violation in $b \rightarrow s$

errors)

systematic

errors

total

2.6 σ (2006) from sin2 ϕ_1

$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \stackrel{\text{HFAG}}{\underset{\text{DECLIMARY}}{\text{HFAG}}}$ World Average b→ccs 0.68 ± 0.03 φK⁰ -* Average 0.39 ± 0.18 η' K⁰ Average 0.59 ± 0.08 K_s K_s K_s Average 0.51 ± 0.21 $\pi^0 K_c$ Average 0.33 ± 0.21 pº K. 0.17 ± 0.58 Average ωK。 Average 0.48 ± 0.24 K0 -Average 0.42 ± 0.17 π° π^PK -0.84 ± 0.71 K⁺ K⁻ K⁰ Average .58 ± 0.13 +0.12

$B \rightarrow \phi K^0$, $\eta' K^0$, KsKsKs projection for SuperKEKB

$B \rightarrow \tau \nu$

 $m_{\rm b} \tan \beta + m_{\rm u} \cot \beta$ Proceed via W annihilation in the SM. $m_{\tau} \tan \beta$ b SM Branching fraction is given by **H**+/W+ $\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$ U / \blacksquare f_R determination 2.5 -0.0Sensitive to the charged Higgs $\tilde{\epsilon}_0 \frac{m_{H^{\pm}}}{100 \, \text{GeV}}$ 0.011.5 $\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\text{SM}} \times r_H$ r_H 0.5 $r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)^2$ 0.2 0.4 0 0.1 0.3 $\tan\beta/m_{H^{\pm}}$

Full Reconstruction Method

- Fully reconstruct one of the B's to tag
 - B production
 - B flavor/charge
 - B momentum

Single B meson beam in offline !

Powerful tools for B decays w/ neutrinos

$B \rightarrow \tau v$ Candidate Event

Toru lijima @ Flavour in the LHC era

The 1st Evidence of $B \rightarrow \tau v$

The final results are deduced by unbinned likelihood fit to the obtained E_{ECL} distributions.

Signal shape : Gauss + exponential Background shape : second-order polynomial + Gauss (peaking component)

	$N_{\rm obs}$	N_{s}	$N_{ m b}$	Σ
$\mu^- \bar{\nu}_\mu \nu_\tau$	13	$5.6^{+3.1}_{-2.8}$	$8.8^{+0.1}_{-0.1}$	2.7σ
$e^- \bar{\nu}_e \nu_\tau$	12	$4.1^{+3.3}_{-2.6}$	$9.0^{+0.1}_{-0.1}$	1.8σ
$\pi^- \nu_{\tau}$	9	$3.8^{+2.7}_{-2.1}$	$3.9^{+0.1}_{-0.1}$	2.4σ
$\pi^-\pi^0\nu_\tau$	11	$5.4^{+3.9}_{-3.3}$	$5.4^{+0.6}_{-0.6}$	1.7σ
$\pi^-\pi^+\pi^-\nu_\tau$	9	$3.0\substack{+3.5\\-2.5}$	$4.8^{+0.4}_{-0.4}$	1.1σ
Combined	54	$17.2^{+5.3}_{-4.7}$	$32.0\substack{+0.7\\-0.7}$	4.6σ

 Σ : Statistical Significance

Observe 17.2^{+5.3}_{-4.7} events. Significance decreased to 3.5 σ after including systematics

PRL97, 251802 (2006)

Product of B meson decay constant f_B and CKM matrix element |V_{ub}|

$$f_B \times V_{ub} = (10.1^{+1.6+1.1}_{-1.4-1.3}) \times 10^{-4} \, GeV$$

• Using $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3}$ from HFAG

$$f_B = 229^{+36+30}_{-31-34} M eV$$

15% 14% = 12%(exp.) + 8%(V_{ub})

 $f_B = 216 \pm 22 \text{ MeV}$

[HPQCD, Phys. Rev. Lett. 95, 212001 (2005)]

Constraints on Charged Higgs

B Belle 447 100 849 05.50 C.L.) 250 H[±] Mass (GeV/c²) 000 120 A rH 2σ 100 Tevatron Run I $\stackrel{\circ}{\longleftrightarrow} \mathbf{B}$ 0.1 0.3 Excluded (95% C.L.) Õ A LEP Excluded (95% C.L.) $\tan \beta / m_{H}$ 50 60 80 100 20 40 0 tan β

Cont'd

Search for Charged Higgs

Good chance to find in the existing dat

23

$\mathbf{B} \rightarrow \mu v (\mathbf{e} v)$

- Signal = monoenegetic charged lepton
- Inclusive reconstruction employed.
 - Reconstruct the accompanying B via a 4-vector sum of everything else in the event.
 - Efficiency: $2.18 \pm 0.06\%$ (µv), $2.39 \pm 0.06\%$ (ev)
 - N_{SM} : 2.8±0.2 (µv), (7.3±1.4)×10⁻⁵ (ev)

SM prediction. $Br(\tau v) = 1.6 \times 10^{-4}$ Br(μν)=7.1x10⁻⁷ $Br(ev)=1.7\times10^{-11}$

$\mathbf{B} \rightarrow \mu \nu (\mathbf{e} \nu)$

B $\rightarrow \mu \nu$ is the next milestone decay.

We may start to see by adding more data.

~50 events @ 5ab-1 ~500 events @ 50ab-1

Precise $B \rightarrow \tau v/\mu v$ data provide lepton universality test.

- Higgs effect itself is universal.

 $R_{H}^{\tau\nu} = R_{H}^{\mu\nu}$

- Good probe to distinguish NP models.

FCNC Decays

- FCNC processes: $b \rightarrow s\gamma$, $b \rightarrow sII$ decays
 - Forbidden in SM at tree level.
 - Occur via box diagrams or penguin loops.
- Sensitive to non-SM physics (charged Higgs, SUSY,...).
 - B→K*(892)γ
 - Rate difference bet. charged and neutral decays
 - Charge asymmetry (Acp < 1% in SM)
 - $B \rightarrow \rho \gamma, B \rightarrow \omega \gamma$
 - |Vtd/Vts|²
 - $B \rightarrow K^{(*)}II, B \rightarrow XsII$
 - Branching fractions, dilepton mass spectrum, F-B asymmetry

Clean low energy tool to probe high energy scale !

Sep 14, 2002

Toru lijima / Nagoya

B→K^{*}II FB Asymmetry

q² distribution has different pattern depending on sign(C₇). $A_{FB} \propto \Re \Big[C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \Big]$

Belle (386MBB), PRL96,251801(2006)

 q_0 (the point w/ A_{FB} =0) is sensitive for New Physics SM; q_0^2 =(4.2±0.6)GeV²

Future Prospect: B→Kvv

■ Belle @ 250fb⁻¹ (preliminary) cf.) K.Ikado @ BNM2006 Fully reconstructed tag (by modifying the PID criteria used in $B \rightarrow \tau \nu$ analysis).

Consistent with BG expected

$$\mathcal{B}(B^+ \to K \nu \bar{\nu}) < 3.6 \times 10^{-5} (90\% \text{C.L.})$$

Signif.	Lum (ab ⁻¹)	
<mark>3</mark> σ	12	
5 σ	33	

|Vub| Measurement

- Semileptonic decays are the most common utilities.
- Measurement of b→ulv suffer from O(10³) larger b→clv background, and need introduce a cut → extrapolation error.
- In B factory era, tagging allows us to measure not only PI, but also Mx and q2, by which the extrapolation error can be reduced.

CKM at Summer02 \rightarrow 05

GOAL w/ 500-1000 fb⁻¹ data $\Delta |V_{ub}| < 5\%$ with both inclusive and exclusive

(the two approaches will cross check each other)

|Vub| tension & $B \rightarrow \tau v$

- |Vub| tension problem: measured |Vub| is larger than that from the CKM fit.
- τv tension? : measured Br(τv) is larger than that from the CKM fit.
- Something may be wrong with the measured |Vub|? But, it cannot solve the two at the same time.

- It would be very interesting to see this comparison with improved $B \rightarrow \tau v$ measurement.
- It is important to cross check |Vub| with exclusive.

Belle Upgrade

■ 世界最強のKEKBを crab cavity でさらに増強。

- 150fb-1/年 →300fb-1/年
- 2~3 ab-1 by 2009.

■ B物理で注目すべきところ

- ペンギン崩壊におけるCPV → 新しいCPV位相
- FCNC: forward-backward asymmetry in KII
- Higgs effect
 - B→τν, 観測済。精度向上
 - Dτν, μν, まず観測。

- |Vub| + φ3

Super-B ~

Backup Slides

New Physics in large tanβ

- Leptonic decays (B→lv, II) are theoretically clean, free from hadronic uncertainty.
- In particular, they are good probes in large tanβ region, together with other measurements; Δm_{BS} , $B_s \rightarrow \mu\mu$, $B \rightarrow X_s\gamma$ and also τ decays ($\tau \rightarrow \mu\eta$, $\tau \rightarrow \mu\gamma$). Ex.) G.Isidori & P.Paradisi, hep-ph/0605012

35

Sensitivity for Charged Higgs

The Unitarity Triangle

History of $B^0 \rightarrow \pi^+\pi^-$ decay

ICHEP2006: BaBar($\pi\pi/\rho\pi/\rho\rho$) + Belle($\pi\pi/\rho\rho$)

$$\alpha/\phi_2 = [93^{+11}_{-9}]^\circ$$

consistent with a global fit w/o α/ϕ_2

 $\alpha_{\text{Global Fit}} = [98 + 5]^{\circ}$

Is this enough ?

No,

• A little tension between $|V_{ub}|$ and ϕ_1 .

Need improvement of ϕ_3

- We should first determine the apex by tree-level processes; $|V_{ub}|$ + ϕ_3
- Then compare it to others;
 - Bd mixing and CPV
 - Bs mixing and CPV
 - εK and $B(K \rightarrow \pi v v)$

 $|V_{ub}|e^{-i\phi 3}$ V_{td}

Constraints on C_i from $B(B \rightarrow X_s f^{\dagger})$

P.Gambino, U.Haisch and M.Misiak PRL 94 061803 (2005)

- Clean prediction for $B(B \rightarrow X_s II)$ with $1 < q^2 < 6 GeV^2$ is available.
 - Combine Belle and Babar results
 - Sign of C_7 flipped case with SM C_9 and C_{10} value is unlikely.

BF	Belle	Babar	WA	SM	$C_7 = -C_7^{SM}$
$q^2 > (2m_{\mu})^2$	4.11±1.1	5.6 ± 2.0	4.5±1.0	4.4 ± 0.7	8.8±0.7
1 <q<sup>2<6GeV²</q<sup>	1.5±0.6	1.8±0.9	1.60 ± 0.5	1.57±0.16	3.30 ± 0.25

$B \rightarrow X_{s\gamma} CP A symmetry$

- Sensitive to NP.
- Theoretically clean.
- Standard Model "~Zero".
 - Gamma is polarized, and the final state is almost flavor specific.
 - Helicity flip of γ suppressed by ~m_s/m_b
- Time dependent CPV requires vertex reconstruction with Ks $\rightarrow \pi + \pi$ -

Vertex recon. Eff. 51% (SVD2) 40% (SVD1)

43