4. 弱い相互作用

弱い相互作用は

 $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ 寿命 t=2.6×10⁻⁸sec

 $\mu^+ \rightarrow e^+ \nu_e \nu_\mu$ 寿命 t=2.2×10⁻⁶sec

 $^{10}\text{C} \rightarrow ^{10}\text{B*} e^+ v_e (p \rightarrow ne^+ v_e)$

n→pe⁻v_e 寿命 t=920sec

K⁺→ π^+ π^0 寿命 t=1.2×10⁻⁸sec

というふうに、相互作用が弱いので強い相互作用・電磁相互作用と比べて粒子の寿命は長 くなる。(注)弱い相互作用で壊れる粒子は、光速(3×10⁸m/s)で飛ぶと粒子の飛跡の観測が 可能である。他の相互作用の粒子は、通常壊れた後の粒子の観測しかできない。

4.1 レプトン数

ここで、弱い相互作用の特徴としてレプトン数の保存がある。上記の過程でレプトン数は 電子数、ミューオン数と存在し

 $L_e=+1: e^-, v_e \qquad \Leftrightarrow L_e=-1: e^+, v_e$

 $L_{\mu} = +1: \mu^{-}, \nu_{\mu} \qquad \Leftrightarrow L_{\mu} = -1: \mu^{-}, \nu_{\mu}$

をもつ。他にタウ数も存在する。クォークはレプトンでないので、レプトン数がゼロである。レプトン数の比保存はニュートリノ振動を除いて観測されておらず、

 $\mu^+ \rightarrow e^+ \gamma$

の崩壊が観測されていないことは、レプトン数の保存で説明されている。

[HW] レプトン数保存を使って、以下の崩壊や反応が禁止されていることを示せ。

- (ア) $2n \rightarrow 2p + 2e^{-}$ (ニュートリノレス2重ベータ崩壊)
- (イ) $v_{\mu}+p \rightarrow \mu^{+}+n$ (ニュートリノ・陽子散乱)
- (ウ) K⁰→ μ⁺+e⁻ (K 中間子稀崩壊)

4.2 ニュートリノと C、P の破れ、V-A型荷電カレント

弱い相互作用の中にはニュートリノを含む反応が珍しくない。しかし現在ニュートリノは 左向きニュートリノと右巻き反ニュートリノしか観測されていない。このため、弱い相互 作用においては

P変換: 左巻きニュートリノ ↔ 右巻きニュートリノ

C変換: 左巻きニュートリノ ↔ 左巻き反ニュートリノ

のため C 変換、P 変換が破れていることが容易に予想される(注1: C P 変換はよい近似で 成り立っているが、やはり破れていることがわかっている。注2: ニュートリノが含まれて いなくても、弱い相互作用では C 対称性、P 対称性は破れている。)

ここで、ニュートリノはヘリシティの状態で区別される。 $\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$ を定義すると、 γ^5 は他の γ 行列と反交換で $\gamma^{\mu}\gamma^5 + \gamma^5\gamma^{\mu} = 0$ を満たす。超相対論的現象を議論するときに便利 なワイル表示では

$$\alpha^{i} = \begin{pmatrix} -\sigma_{i} & 0\\ 0 & \sigma_{i} \end{pmatrix}, \beta = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \gamma^{i} = \beta \alpha^{i} = \begin{pmatrix} 0 & \sigma_{i}\\ -\sigma_{i} & 0 \end{pmatrix}, \gamma^{5} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

となる。ここでニュートリノを例にとり、質量が無い(E>>m) 粒子に対する Dirac 方程式 は $H \varphi = \vec{\alpha} \cdot \vec{p} \varphi$

$$\varphi = \begin{pmatrix} \chi \\ \phi \end{pmatrix}$$
と2成分スピノール χ, ϕ で表すと

 $E\chi = -\vec{\sigma} \cdot \vec{p}\chi$ $E\phi = \vec{\sigma} \cdot \vec{p}\phi$ となる。 $\vec{\sigma} \cdot \vec{p}/|\vec{p}|$ は(2.8)式のヘリシティ演算子で χ はヘリシティ - 1の解(左

巻き)について、¢はヘリシティ+1の解について成り立つ。ヘリシティ - 1 と+1の解を選 ぶ演算子は

$$\frac{1-\gamma^5}{2}, \frac{1+\gamma^5}{2}$$
 (4.1)

とそれぞれ表せる。左巻きニュートリノは

$$\frac{1-\gamma^5}{2}\varphi = \begin{pmatrix} \chi & 0\\ 0 & 0 \end{pmatrix} と選び出せる。$$

また $\gamma^5 \chi = -\chi$ 、 $\gamma^5 \phi = +\phi$ は γ^5 の固有状態で、 γ^5 のことをカイラリティ(chirality)演算子という。相対論的極限ではカイラリティ演算子はヘリシティ演算子に等しい。

電荷を変える弱い相互作用では左巻きの正粒子(もしくは右巻きの反粒子)が反応に寄 与することが実験的にわかっており(C,Pの破れ)、弱い相互作用での荷電カレントは

$$J^{\mu} = \overline{\varphi}_e \gamma^{\mu} \frac{1 - \gamma^5}{2} \varphi_{\nu} \quad ----(4.2)$$

と記述される。ここで、 $\overline{\varphi}_{\nu}\gamma^{\mu}\varphi_{\nu}$ はベクトル(vector)カレント、 $\overline{\varphi}_{\nu}\gamma^{\mu}\gamma^{5}\varphi_{\nu}$ は軸性ベクトル

(Axial vector) カレントと呼ばれる(ベクトルは空間反転に対して符号が反転するが、軸 性ベクトルは反転しない)。これにより、弱い相互作用のカレントはV-A型と呼ばれる。 J^{μ} は空間反転Pに対して対称でない(注:空間反転すると $J^{\mu} = -\overline{\varphi}_{e}\gamma^{\mu}\frac{1+\gamma^{5}}{2}\varphi_{v}$)となって しまうので、弱い相互作用のカレントはP変換対称性を破っている。 例:Wuの実験

<u>4.3 弱い相互作用の伝播関数とフェルミ相互作用</u>

弱い相互作用が弱いのは、力を媒介する粒子(ゲージボソン)の質量が重いからである。 質量を持つベクトル粒子の伝播関数は

 $\frac{i(-g^{\mu\nu} + p^{\mu}p^{\nu}/M^2)}{p^2 - M^2}$ となる (QL-p145)。質量が重い場合、伝播関数は $\propto \frac{1}{M^2}$ の形となる。 実際フェルミは点相互作用で弱い相互作用の不変振幅を M=GJ^µJ_µと表式化した。ここでG はフェルミ定数とよばれ、電磁相互作用に比べ格段に小さい値をとる。これは M=80GeV で 1GeV 付近のエネルギー反応を考えると $\frac{1}{M^2} \sim 0.0001$ より自明である。実際、弱い相互 作用の結合定数をgとすると

$$\frac{G}{\sqrt{2}} = \frac{g^2}{8M^2}$$
 (4.3)

が成り立つ。

[HW]式(4.3)で g=e, $G \cong 10^{-5}/m_N^2$ 、mN=0.939.6GeV/c² とすると、ゲージボソンの質量M はいくらと求まるか?g~e は電磁相互作用と弱い相互作用の統一を示唆する。

Gは質量の2乗の逆数の次元を持ち、その大きさは $G \simeq 10^{-5}/m_N^2 \sim 10^{-5} \text{GeV}^{-2}$ 程度である。

また、この表式は反応のエネルギーがM程度になると成立せず、正確に計算する必要がある。係数を考慮して電荷を変える弱い相互作用の不変振幅は

[1]原子核のベータ崩壊

図 12・2 弱カレントを示す β 崩壊 p \rightarrow ne⁺ ν_{e}

と表せる。

原子核のベータ崩壊の微分断面積をニュートリノ質量ゼロとして求めると

$$\frac{d\Gamma}{dp_{e}} = \frac{G^{2}}{\pi^{3}} p_{e}^{2} (E_{MAX} - E_{e})^{2} \quad ----(4.5)$$

となる (E_{MAX} は電子の取り得る最高エネルギー)。 $\frac{1}{p_e}\sqrt{\frac{d\Gamma}{dp_e}}$ を E_eの関数としてプロットし

た図を Kurie プロットと言い、EMAX がニュートリノの質量に依存するので、ニュートリノ 質量の測定に用いられる。また相対論的近似(pe~Ee)を使うと、崩壊幅(全断面積)は

$$\Gamma = \frac{1}{\tau} = \frac{G^2}{30\pi^3} E_{MAX}^5 - (4.6)$$
となる。
式(4.7)を実験と比較すると

 $G \sim 10^{-5} / m_N^2$ (mN は核子質量) — (4.7)

が測定される。

[2]ミューオン崩壊

図 12·4 μ^- 崩壊 $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$

ここでカレントは電荷を上げるカレント **チ**と電荷を下げるカレント J₄[†]の積になっている。 電荷を下げるカレントは電荷を上げるカレントのエルミート共役になっている。

μ崩壊の微分断面積は

 $J_{\alpha}^{\dagger} = \overline{\varphi}_{\nu} \gamma_{\alpha} \frac{1 - \gamma^{5}}{2} \varphi_{e}$

 $M(\mu^- \to e^- \overline{\nu}_e \nu_\mu) = \frac{4G}{\sqrt{2}} J^\alpha J_\alpha^{\dagger}$

$$\frac{d\Gamma}{dE_e} = \frac{G^2}{12\pi^3} m_{\mu}^2 E_e^2 (3 - \frac{4E_e}{m_{\mu}}) - (4.9)$$

ここで、Eeの最大値は m/2 である。崩壊幅(全段面積) は

$$\Gamma = \frac{1}{\tau} = \frac{G^2}{192\pi^3} m_{\mu}^{5} - (4.10)$$

となる

実験からフェルミ定数Gを求めると

$$G_{\mu} = 1.166 \times 10^{-5} GeV^{-2}$$
$$G_{\beta} = 1.136 \times 10^{-5} GeV^{-2}$$

とわずかに異なっていた。この違いはカビボ・小林・益川行列により説明がつく(4.7章)。

[HW] 弱い相互作用においてベータ崩壊、μ粒子崩壊、π崩壊の崩壊幅(寿命の逆数)を計算 すると常にフェルミ定数(G)の二乗かけるエネルギーの5乗に比例している。この理由を 次元の考察から説明せよ。

π崩壊の崩壊幅(全段面積)は

$$\Gamma = \frac{G^2}{8\pi} f_{\pi}^2 m_{\pi} m_{\mu}^2 (1 - \frac{m_{\mu}^2}{m_{\pi}^2})^2 - (4.11)$$

となる。この場合非レプトン側のカレントは $\mathbf{u} \rightarrow \mathbf{d} + \mathbf{W}$ である。(ここで \mathbf{f}_{π} は π の崩壊定数 と呼ばれ、弱い相互作用が自由クォークではなくて π 中間子内の束縛されたクォークによ り引き起こされることに由来する。ここでは $\mathbf{f}_{\pi} \sim \mathbf{m}_{\pi}$ と仮定する)。

π 中間子の電子への崩壊と比較すると

 $\frac{\Gamma(\pi \to e\nu)}{\Gamma(\pi \to \mu\nu)} = \frac{m_e^2 (m_\pi^2 - m_e^2)^2}{m_\mu^2 (m_\pi^2 - m_\mu^2)^2} = 1.284 \times 10^{-4}$

となり、π中間子は主に電子に崩壊する。これは V-A 理論の特徴の現れである。

図 10.3 $\pi^+ \rightarrow \mu^+ \nu$ の崩壊率が m_{μ}^2 に比例する

 π^+ のスピンは0であり、ニュートリノはヘリシティが負であるから角運動量保 存則によって μ^+ のヘリシティも負である。ところが V-A 相互作用では μ^+ の 波動関数はヘリシティの負成分と、正成分の振幅比が m/E に比例するので崩壊 率 $\simeq m^2/p^2$ となる。

[HW] 質量 140MeV の π 中間子の寿命は 2.6×10⁻⁸sec である。 質量 500MeV の荷電 K+中間 子も主崩壊モードが K+→μ+vであると仮定する。 K+の寿命を求めたい。

(ア) $\pi^+ \rightarrow \mu^+ \nu$ 崩壊はクォークレベルでは $\mathbf{u} + \mathbf{d} \rightarrow \mu^+ \nu$ 、 $\mathbf{K}^+ \rightarrow \mu^+ \nu$ 崩壊はクォークレベルでは $\mathbf{u} + \mathbf{s} \rightarrow \mu^+ \nu$ である。カビボ角による \mathbf{K}^+ 崩壊の抑制は $\frac{\Gamma(K \rightarrow \mu\nu)}{\Gamma(\pi \rightarrow \mu\nu)} \propto \frac{\sin^2 \theta_c}{\cos^2 \theta_c} = \tan^2 \theta_c \sim 0.05$

となることを示せ(4.7 章参照)。

- (イ) f_K=m_Kと仮定して、π⁺の寿命から K⁺の寿命を求めよ。実際の荷電 K⁺中間子の寿 命は 1.2×10⁻⁸sec である。
- (ウ) $\frac{\Gamma(K \to e\nu)}{\Gamma(K \to \mu\nu)}$ を求めよ。この値が $\frac{\Gamma(\pi \to e\nu)}{\Gamma(\pi \to \mu\nu)}$ よりも小さくなっていることについて考察せよ。

<u>4.4 ニュートリノ・電子散乱</u>

弱い相互作用の媒介粒子には電荷を持つもの(W[±])と持たないもの(Z⁰)の2種類が存在し、 荷電カレント反応と中性カレント反応がある。特徴として

- 荷電カレント反応は純粋な V-A構造を持つ。
- 中性カレント反応は V-A 優勢であるが、100% V-A 構造ではない。
- 荷電カレント反応は粒子のフレーバーを変えるものが存在する(ベータ崩壊。π中間 子崩壊)。
- 中性カレント反応はフレーバーを変えない。このため、4.3節で説明した粒子の崩壊に は中性カレントは関与していない。

ここでは電子ニュートリノと電子の荷電カレント散乱を考える。ファインマンダイアグラ ムは下図のように表せ、その振幅は

(a) ニュートリノ・電子散乱

Ť

(b) 反ニュートリノ・電子散乱

図 12・8 弾性散乱 $\nu_{ee}^- \rightarrow \nu_{ee}^-, \bar{\nu}_{ee}^- \rightarrow \bar{\nu}_{ee}^-$ に対する 荷電カレントの寄与

$$M(v_e e^- \to e^- v_e) = \frac{4G}{\sqrt{2}} J^{\alpha} J_{\alpha}$$
$$J^{\alpha} = \overline{\varphi}_v \gamma^{\alpha} \frac{1 - \gamma^5}{2} \varphi_e$$
$$J_{\alpha}^{\dagger} = \overline{\varphi}_v \gamma_{\alpha} \frac{1 - \gamma^5}{2} \varphi_e$$

この計算を行うと最初の標的電子が止まっていて且つ電子質量を無視した場合

$$\frac{d\sigma(v_e e \to e v_e)}{d\Omega} = \frac{G^2 s}{4\pi^2} = \frac{G^2 E_v^2}{4\pi^2} - (4.12)$$
となる。また全断面積は

$$\sigma(v_e e \to e v_e) = \frac{G^2 s}{\pi} - (4.13)$$

となる。

[HW]反応断面積は式(4.13)にあるようにフェルミ定数(G)の二乗かけるエネルギーの 2 乗に比例している。この理由も次元の考察から説明せよ。

反ニュートリノと電子の散乱は 2.3.7 節でやったように s↔t 変数(式 2.2.5、2.26)の置き

換えを行えばよい。式(4.12)より

$$\frac{d\sigma(\overline{v_e}e \to e\,\overline{v_e})}{d\Omega} = \frac{G^2 t}{4\pi^2}$$

電子と電子の散乱各を θ とすると、標的電子が静止していたとして t≈-s/2(1-cos θ)なので $\frac{d\sigma(\bar{v}_e e \to e \bar{v}_e)}{d\Omega} = \frac{G^2 s}{16\pi^2} (1 - \cos\theta)^2 - (4.14)$

となる。よって反ニュートリノの散乱においては前方では反応が抑制されていることがわ かる。

[HW] t≈-s/2(1-cosθ)を確かめよ(QL(4.45)式参照)。またヘリシティー保存から反ニュート リノ散乱で前方散乱が抑制されることを説明せよ。

式(4.14)を積分して全断面積を求めると

$$\sigma(\overline{\nu}_e e \to e \,\overline{\nu}_e) = \frac{G^2 s}{3\pi} = \frac{1}{3} \sigma(\nu_e e \to e \nu_e) - (4.15)$$

が成り立つ。

ニュートリノ・電子散乱

$$\nu_e$$
 e^- 反応前 $\overline{\nu_e}$ $e^ \overline{\rho_e}$ e^-
 $(J_z)_i = (J_z)_f = 0$
許 容 茶 止

図12·10 重心系における後方散乱。長い矢印は粒子の 運動量,短い矢印は粒子の質量を無視する極限でのヘリ シティーを表す。2軸は入射ニュートリノの方向にとっ てある。

4.5 ニュートリノ・クォーク散乱

ニュートリノ・クォーク散乱は陽子内のパートン分布を図る上で重要な役割を担ってきた。

クォークの荷電カレント反応断面積は

$$y \equiv \frac{p \cdot q}{M}$$
$$= \frac{E - E'}{E} [Lab]$$

を用いると式(4.13)、(4.15)同様に

$$\frac{d\sigma(v_{\mu}d \to \mu^{-}u)}{dy} = \frac{G^{2}xs}{\pi}$$

$$\frac{d\sigma(\overline{v}_{\mu}u \to \mu^{+}d)}{dy} = \frac{G^{2}xs}{\pi}(1-y)^{2}$$
(4.12)

注: $1-y \approx \frac{1}{2}(1+\cos\theta)$ 。反ニュートリノ反応で生成される粒子が反粒子 μ +なので電子散乱の場合と逆で前方散乱が優勢となっている。

陽子・中性子が同数含まれている標的(アイソスカラー標的)においては、u クォークと d クォークが同数あるので全クォークに関して積分すると

$$\sigma(\overline{\nu}_{\mu}u \to \mu^{+}d) = \frac{1}{3}\sigma(\nu_{\mu}d \to \mu^{-}u)$$

が成り立つ。実験では x,y に関する微分断面積を精密に測定し、パートンの分布関数の測定 が多く行われた。

4.6 中性カレント

中性カレント反応はフレーバーを変えないので、 $K^{0}(sd) \rightarrow \mu \mu$ 崩壊等は禁止されている {図でも説明}。

よって、中性カレント反応は 1973 年まで発見されなかった。中性カレント反応の振幅を考 える。

$$\begin{split} M(v_e e^- \to v_e e^-) &= \frac{4G}{\sqrt{2}} \rho J^{\alpha^{NC}} J_{\alpha}^{NC} \\ J^{\alpha^{NC}} &= \overline{\varphi}_v \gamma^{\alpha} \frac{c_v - c_A \gamma^5}{2} \varphi_v = \overline{\varphi}_v \gamma^{\alpha} \frac{1/2 - 1/2 \gamma^5}{2} \varphi_v (\Xi \Box - \mathbb{N} \ \mathbb{U} \ \mathcal{D} \ \mathbb{B} \ \mathbb{C}) \quad ---(4.13) \\ J_{\alpha}^{\ \mathrm{NC}} &= \overline{\varphi}_e \gamma_{\alpha} \frac{c_v - c_A \gamma^5}{2} \varphi_e \end{split}$$

ここでρは荷電カレントと中性カレントの相対的な強さを記述するパラメータで現在の実験では1であり、標準模型で1を予言する。cv,cA はベクトル (V) カレント、軸性ベクトル (Axial Vector) カレントの相対的強さを記述するパラメータである。標準理論では

フレーバー	CA	CV
V	1/2	1/2
e, μ, τ	-1/2	-0.03
u,c, t	1/2	0.19
d, s, b	-1/2	-0.34

となる(5.2章で説明)。よって軸性ベクトルカレントが優勢となっている。 実は電磁相互作用と弱い相互作用の統一で、質量ゼロのゲージボソンが光子、質量を持っ たものが Z⁰となっているので、Z⁰と光子はお互いに関係を持っている。

4.7 カビボ角と小林・益川行列、GIMメカニズム

フレーバーを変える荷電カレント反応がどう起こるか考える。この考えの基礎は荷電カレ ント反応の K+→ $\mu^+\nu$ (63%)崩壊が頻繁に起こるのに対し、中性カレント反応 K⁰→ $\mu^+\mu^-$ (K_L→ $\mu^+\mu^-$ は7×10⁻⁹)崩壊がほとんど起こらないことであった。ここでクォークの 2 重項 $\binom{u}{d}$, $\binom{c}{s}$ を以下のように変更する。ここでフレーバーの固有状態と弱い相互作用の固 有状態が異なっているとする。

弱い相互作用の固有状態を

$$\begin{pmatrix} u \\ d' \end{pmatrix}, \begin{pmatrix} c \\ s' \end{pmatrix} \ge U, \ d,s \ge d',s' \text{の間を}$$

$$d' = d \cos \theta_c + s \sin \theta_c \\ s' = -d \sin \theta_c + s \cos \theta_c \quad b \cup \langle u \begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

$$\ge$$

$$\ge$$

$$B \Bar{Gorder} \Bar{G$$

と書ける。この関係から、ベータ崩壊($d \rightarrow ue^{-\overline{v}}$)のフェルミ定数 G_{β} が μ 崩壊のフェル ミ定数 G_{μ} と異なっていたのは $G_{\beta}=G_{\mu}cos\theta_{c}$ だったからである。実験から $sin\theta_{c}\sim0.22$ である。

このことから、例として K⁺→ $\mu^+\nu$ 崩壊は π^+ → $\mu^+\nu$ 崩壊に比べて $|\sin \theta_c / \cos \theta_c|^2 = \tan^2 \theta_c$ 小さ

いことがわかる。また $c \rightarrow sud$ 崩壊は $c \rightarrow \overline{sud}$ 崩壊に比べて $\tan^4 \theta_c$ 小さいことが予想される。

[HW] $c \rightarrow sud$ 崩壊は $c \rightarrow \bar{s}ud$ 崩壊に比べて $\tan^4 \theta_c$ 小さいことを示せ。

この U 行列を 3 世代のクォークを記述できるように 3 行 3 列に拡張したものが小林・益川 行列である。小林益川行列は

$$U_{KM} = \begin{pmatrix} U_{ud} & U_{us} & U_{ub} \\ U_{cd} & U_{cs} & U_{cb} \\ U_{td} & U_{ts} & U_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$
$$= \begin{pmatrix} \sim 0.97 & \sim 0.22 & \sim 0.003 \\ \sim 0.22 & \sim 0.97 & \sim 0.04 \\ 0.01 & 0.04 & \sim 1.0 \end{pmatrix}$$

と書ける。ここで c_{ij}=cosθ_{ij}、s_{ij}=sinθ_{ij}である。 小林・益川行列は3つの角度θ₁₂, θ₁₃, θ₂₃と一つの位相δで記述されている。 この複素位相δがあることで、弱い相互作用では CP 対称性が破れている。