Mizuche work report

A.Murakami

Contents

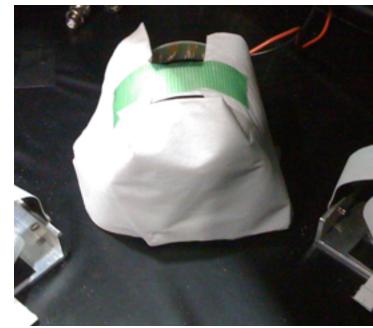
- PMT Gain 再測定
- ADC Calibration
- ・おまけ

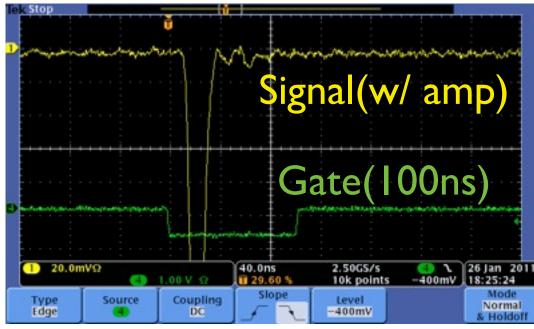
PMT Gain 再測定

● PMT Gain は以下の方法で算出

$$Gain = \frac{Mean^2}{RMS} \times \frac{AD\ conversion(0.25pC)}{elementary\ charge(1.6e^{-19})}$$

- が、LEDの不安定性(Δ (LED))とPoisson分布(σ)のばらつきを考えた際に、 Δ (LED) > σ の場合は、測定からゲインを求める際に上の式が使えない。
- 実際にどうなのかを、LEDへの電圧を一定にしつつ、PMT窓を マスクすることで確かめる。
 - Δ (LED) > σ の場合、マスクありなしでゲインが異なるはず。


Set up

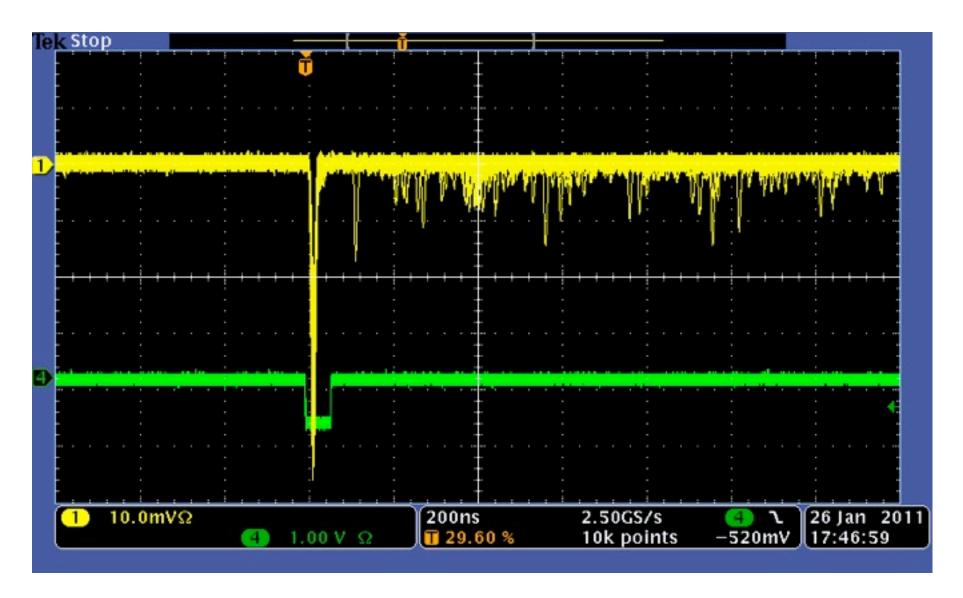

使用PMT:全数ゲイン測定時に Referenceとして使用していた PMT

• HV: 1100 V

● LED電圧:3.2 V

- マスク:PMT窓にティッシュを かぶせた
- ・ 読み出し:全数ゲイン測定時と 同じ(アンプあり)

結果


● 各測定の前にペデスタルを測定、その平均値をペデスタル 値として使用.

	Mean [adc count]	RMS [adc count]	Gain	P.E.
マスクなし	316.6	53.5	1.41E+06	35.I
ティッシュI枚	120.6	33.2	1.43E+06	13.2
ティッシュ2枚	68.6	24.9	I.42E+06	7.59

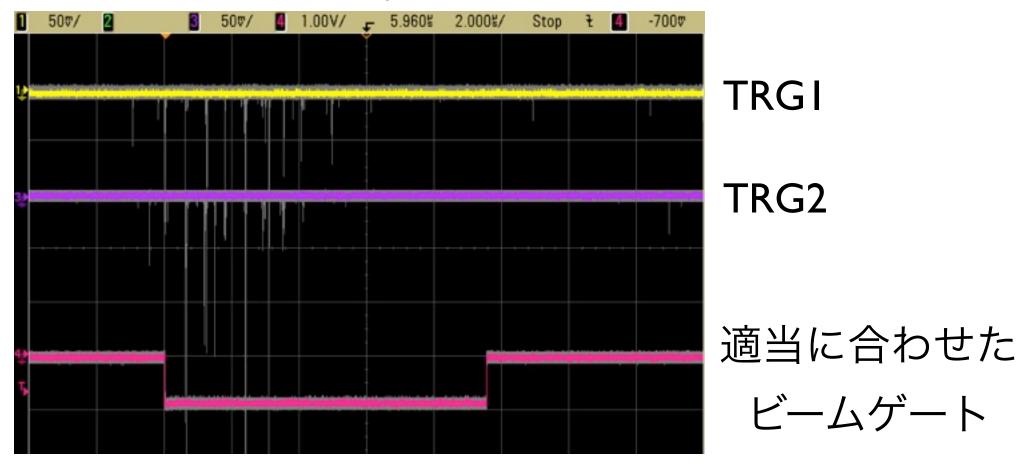
→ Gainは一定

→ LEDが特別不安定というわけではなさそう

Reference PMT のオシロの絵

→ こんなもんでしたっけ?

CAMAC ADC Calibration


- QT generator からのチャージを使用。
 - QTの出力はI%以下の精度でただしいことをオシロの波形 を積分することで確認 → QTの出力は正しいものとする。
- だいたいあってるかを診たかったので、始めの十数イベント のADC出力で確認.

input charge [pC]	ADC count	AD convert factor	
0	134		
10	175 (41)	0.244	
50	339 (205)	0.244	
100	544 (410)	0.244	

→ 特に問題なさそう

おまけ

● 前置ホール地下B2に宇宙線測定時に使用していたトリガーシンチを2枚おいておいた。

→ が、トリガーの数を記録していなかった