Mizuche Project MC study

Mizuche Group

 水の抜き差しでFV内でのイベント数を求めるためには、 Outer内でのイベントに対する検出効率が水あり・水な しの場合で一致する必要あり.

Overview of MC

は作成中)

- Neutrino interaction : Fluxを元にNEUTで水でのニュー
 トリノ反応をシミュレート.
- Detector response : GEANT4で検出器を再現. 荷電粒子
 によるチェレンコフ光生成をシミュレート.

Detector MC : Geometry

 タンク、Fiducial volume (FV)のスペック、PMTの設置 位置は実機スペックをGEANT4で再現.

Detector MC : setting

- 水・アクリル・空気の境界について
 - 境界は真っ平らな状態(乱反射しない)
 - 各物質に屈折率を設定.
 - 水:光の波長に依存して変化(I.34~I.36).
 - アクリル:一定値(I.49)
 - 境界での屈折率・反射率は簡単なモデル(Fresnel formula)
 を使用.
 - タンク内側では反射しない (現実にどうするかは要検討)
- PMTのQEは浜ホトのカタログ値を参照.

Neutrino interaction MC

- 同じニュートリノ反応サンプルに対して、FVに水あ り・なしの二通り.
- GEANT4でのニュートリノ反応点はタンクの水中で

Event display (CCQE) : w/ FVwater

ν :0.54GeV, in FV

v:0.56GeV, in Outer (上流)

Total p.e.=458

Total p.e.=860

Event display (CCQE) : w/o FVwater

v:0.56GeV, in Outer (上流)

FV内に水がないので、 Outer部分での反応のみ

Total p.e.=273

Total p.e. distribution

Efficiency (total p.e.>150) to neutrino interacted in FV (CC+NC).

Efficiency (total p.e.>150) to neutrino interacted in Outer (CC+NC).

(# of remaining Outer events)/(# of remaining signal(FV events))

Total p.e. > 150 カット後の(SN)⁻¹ のエネルギー依存性.

Observed neutrino energy (CC+NC)

Total p.e.>150のカットで検出できるニュートリノのエネルギー

of events [/10²¹POT]

CC+NC interaction

	Generate	Total pe > I 50	Efficency
# of events w/ FVwater	2.43E+05	I.53E+05	0.63
# of events w/o FVwater	I.94E+05	I.16E+05	0.60
# of events sub.	4.90E+04	3.70E+04	0.76
# of events generated in FV	5.05E+04	3.70E+04	0.73

of events sub =

(# of events w/ water) - (# of events w/o water)

of expected events / day

Assume 100kW ~ 7.2e16 POT/hour (Iday=24hours)

Use this MC	Interactions/day in Tank	Observations/day in Tank	
w/ FVwater	420 /day	264 /day	
w/o FVwater	335 /day	200 /day	

Summary of this study

- Total p.e. > 150 のカットを用いれば、Outerで反応したニュートリノに対する検出効率は一致.
 - FVで反応したニュートリノを高いSN((SN)⁻¹~3%) で測定できる.
- 光量のスケールを含めた検出器の理解を深めるための
 手法について、どういったものが考えられるか.

検出器の理解の手法

- 何をおさえるべきか
 - MCで予測される測定光量のスケール
 - 境界での反射・屈折 (水ありの場合と水なしの場合)など
- B2スペースでビーム起源の壁からのミューオン(ロック ミューオン)を用いて上記のことが確認できることを示す.
 - ロックミューオンレートの見積もり.
 - MCからロックミューオンによる検出器の応答の予測.

ロックミューオンレート

- INGRIDのニュートリノビーム測定のDataから見積もる.
 - トラッキングを行い、モジュール外から来た長いト ラックを残す粒子を選ぶ.
 - 471800/3.26e19 # of protons at all modules (ニュートリ ノイベントとほぼ同じくらい).
- INGRIDのロックミューオン検出効率~Iと仮定する.
- ・ 面積比を用いてタンク上流から飛来するロックミュー
 オンを見積もる → 92.7 muons/hour @100kW
 - 10時間で~le3 particles, I週間で~le4 particles.

MC setting

- µをタンク上流から打ち込む
- µの条件

- 運動エネルギー:450~1450 MeVの間で一様
- 入射方向は、とりあえずタンク軸に平行に.
- タンク上流の蓋上で一様に発生.
- タンクを貫通したµのみを選択してプロット
- FV内に水あり・水なしの二通り
- Normalization : 927 muons (100kW × 10 hours)

Sample of event (水あり)

Total # of measured pe = 1148

Total p.e. (each categories)

Total p.e. vs (Radius)² (w/ water in FV)

Total p.e. vs (Radius)² (w/o water in FV)

Total p.e. vs (Radius)² (w/o water in FV)

理解を深めるための手法

- 光量のスケール・境界面でのプロセスを含めた検出器の 理解を行う.
- 中心からの距離を変えながら数点で測定し、その位置での光量を求める → エネルギースケールの調整.検出器の応答の確認.
 - トリガーをタンク中心に対して対角線上に置くこと
 で、角度のついたミューオンに対する測定も行う.
- タンクの上流下流にトリガー(ホドスコープ)を設置。タン クを突き抜けるロックミューオンをトリガー.
 - 具体的な案は検討中(なるべく既にあるものがよい.)

Back up

Calc # of gen. photons $\frac{dN_{photons}}{dL} \simeq 2\pi\alpha z^{2}sin^{2}\theta(\lambda_{1}^{-1}-\lambda_{2}^{-1})$

- μ : Mass = 106MeV/c^2
- λI , $\lambda 2 = 270$, 6 I 0 nm = 2.03, 4.6 eV (MC used)
- QE = 0.2 (constant)
- Mean coverage = 6.25% (PMT:164, constant)

Cherenkov threshold (water:n=1.33)

particle	threshold momentum[MeV/c]			
muon	120			
pion	159			
electron	0.57			
proton	1069			

μ mom. [MeV/c]	beta	cosθ	angle [deg]	Gen. photons [/cm]	Gen. pe [/cm]	Measure pe [/cm]
200	0.884	0.851	31.7	261	52.2	3.26
300	0.943	0.797	37.I	345	68.9	4.3 I
400	0.967	0.778	39.0	374	74.8	4.67
500	0.978	0.769	40.0	387	77.5	4.84
600	0.985	0.764	40.2	395	78.9	4.93
700	0.989	0.760	40.5	399	79.8	4.99
800	0.991	0.758	40.7	402	80.4	5.02

30cm path length \rightarrow expect to measure 98~150 p.e.

Reflection probability

Reflection probability

Water : n=1.33, Acrylic n=1.49

Reflection probability

PMT QE

浜松ホトニクスのカタログより

Total p.e. (CC)

Total pe (with HIT threshold) : CC

Total p.e. (NC)

INGRID Efficiency

π+ phase space of parents of neutrino to SK

Phase space of π⁺ at primary interactions (GFLUKA 30 GeV p on C)

π+ phase space of parents of neutrino to Mizuche

π+ phase space of parents of neutrino to INGRID

Rock muon info.

- Analysis selection :
 - # of active plane >=6 (means to penetrate more 5 Iron planes)
 - p.e. / layer > 6.5 (same as neutrino selection)
 - Reconstructed vertex is in the first plane.
 - Not upstream VETO cut (to select µ from the front)

INGRID in-tracking efficiency

DataとMCの各(Radius)^2での光量の比を取った際に、各 点で一様に上下ずれている場合. → MCの光量のスケールがDataと違う. → 調整

µの水中の通過距離の違いによる光量の差が DataとMCで違う場合.

→ 境界面での反射・屈折率が変わると光量差 が変化.MCのパラメータの確認・調整.

光量の(Radius)^2依存の仕方がDataとMCで違

→ PMTとµとの距離(PMTとチェレンコフ光生

成点との距離)によってアクセプタンスが異な

る.MCでのこの応答をDataで確認.

Range of IGeV/c neutron

Total p.e. 以外の測定可能な量

- 水の差し引きでの測定で、上手くFV内で起きた反応だけを測定できることが期待できる。
- 測定量がTotal p.e. だけでは、実際にニュートリノビームのデータを取っている際に、何が測定できているのかがわかりずらい.
 - 他に測定できる量はないか

Neutrino from outside # of particle

