First Test of Lorentz Violation with a Reactor－based Antineutrino Experiment

村上明

Outine

－物理背景
－Spontaneous Lorenz symmetric breaking
－Standard Model Extension

- ニュートリノ物理における Lorentz violation
- Lorentz violationと＂ニュートリノ振動＂
- 実験紹介と測定結果
－LSND
－MiniBooNE
－Double Chooz

インディアナ大学のアラン・コステレツキー教授（V．Alan Kostelecky）のHP http：／／physics．indiana．edu／～kostelec／faq．html

Lorentz violation
－Lorentz violation CPT violation はプランクスケールの物理で起こること が予測されている

- ひも理論，余剰次元，etc
- 測定したいけど，難しい
- プランクスケール： $\mathrm{O}(\sim \mathrm{lel} 9 \mathrm{GeV})$ の物理
- 超高エネルギーの加速器の建設 \rightarrow 難しい
- 宇宙物理ならいけそうな気がする
- 我々のエネルギー領域（～GeV）では，lel9程度抑制
- 超精密測定 \rightarrow 十分期待できる
- なるべく，Standard Modelに準ずる枠組みで解析したい
－Spontaneous Lorentz violation（SLSB），Standard Model Extension（SME）

Spontaneous Lorentz Symmetry Breaking（SLSB）

－Lorentz violationをなるべく自然に導入 \rightarrow Spontaneous Symmetry Breaking（SSB）をベース

Spontaneous Symmetry Breaking（SSB）
Electromagnetic field

基底状態： $\mathrm{E}=\mathrm{B}=0$
\rightarrow 真空期待値 $=0$

メキシカンハット型ポテンシャル
\rightarrow 自発的対称性の破れ
真空期待値 $\langle\Phi\rangle= \pm \lambda$（scalar）

Spontaneous Lorentz Symmetry Breaking（SLSB）

－プランクスケールでは，スカラー場でなく，ベクトル場に依存する ポテンシャル（例：ひも理論はスカラーではなく，ベクトル場から構成）

$$
\begin{aligned}
& V(\vec{C})=\left(\vec{C}^{2}-\lambda^{2}\right)^{2} . \\
& \text { 基底状態 } \vec{C}_{v a c} \equiv\langle\vec{C}\rangle=\vec{\lambda}, \\
& \quad \vec{\lambda}^{2}=\lambda^{2} \text { (Constant) }
\end{aligned}
$$

SpaceTime dependent Scalar の例 ：スカラー場に濃淡をつける

small scalar
－Varying coupling $\xi(x)$ ，scalar field φ and Φ
－Lagrangian contains＂$\zeta(x) \partial^{\mu} \varphi \partial \mu \Phi$＂
\rightarrow（部分積分）：＂$\partial \mu \xi(x) \varphi \partial_{\mu} \Phi "$
4次元の傾き（淡 \rightarrow 濃）$=$ 好まれる方向
粒子がこのスカラー場と相互作用する際，
この方向に垂直か平行かで変わってくる
（実際の理論（宇宙の成り立ち）では，SLSB \rightarrow SSB の順番で起こるらしい）

Spontaneous Lorentz Symmetry Breaking（SLSB）

－宇宙を満たす真空ベクトル場と粒子（SM particle）の相互作用をチェック
$\mathrm{L}=i \psi \gamma_{\mu} \partial^{\mu} \bar{\psi}+m \psi \bar{\psi}+\psi \gamma_{\mu} a^{\mu} \bar{\psi}+\psi \gamma_{\mu} c^{\mu \nu} \partial_{\nu} \bar{\psi}+\cdots$.

- 物理観測量の地球の自転周期に対する依存性を調べる
- 地球自転周期 $=$ 恒星時間（Sidereal time）周期 $=23 h 56 m 4.1 \mathrm{ls}(<24 \mathrm{~h})$

Scientific American（Sept．2004）
dxis of rot ation

例）朝（AM 6：00）と夕方（ \pm 6：00）に測定した （超精密な）物理量（例：原子の超微細構造） が異なっているかもしれない。
\rightarrow 宇宙の指向性，Lorentz violationに繋がる

Lorentz trans．under vacuum vector field

－宇宙の真空に指向性があると，Lorentz transformationはどうなるか
（I）粒子を変換（Particle Lorentz trans．）

Standard Model Extension

－Standard Modelに真空＂ベクトル場＂との相互作用（Particle Lorentz violation）の摂動項を追加したもの

ニュートリノ物理に関する最小限のSMEラグランジアン

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} i \bar{\psi}_{A} \Gamma_{A B}^{\mu} \stackrel{\leftrightarrow}{D_{\mu}} \psi_{B}-\bar{\psi}_{A} M_{A B} \psi_{B}+h . c . \quad \begin{array}{l}
\text { A,B: Majorana basis } \\
\text { flavor space (} 6 \times 6 \text {) }
\end{array} \\
\Gamma_{A B}^{\nu} & \equiv \gamma^{\nu} \delta_{A B}+c_{A B}^{\mu \nu} \gamma_{\mu}+d_{A B}^{\mu \nu} \gamma_{5} \gamma_{\mu}+e_{A B}^{\nu}+i f_{A B}^{\nu} \gamma_{5}+\frac{1}{2} g_{A B}^{\lambda \mu \nu} \sigma_{\lambda \mu}, \\
M_{A B} & \equiv m_{A B}+i m_{5 A B} \gamma_{5}+a_{A B}^{\mu} \gamma_{\mu}+b_{A B}^{\mu}+\frac{1}{2} H_{A B}^{\mu \nu} \sigma_{\mu \mu} .
\end{aligned}
$$

Nonzero term in SM

Additional SME term

SME coefficient（a，b，c，d，e，f，g）symmetry
－CPT－odd \＆Lorentz－violation ：a，b，e，f，g（vector）
－CPT－even \＆Lorentz－violation ：c，d，H（tensor）
場の理論で，一般的に＂CPT violationがあると，Lorentz violationが起こる（CPT violationはLorentz violationの十分条件）＂（O．W．Greenberg）と矛盾しない

Lorentz violationとニュートリノ振動

－Lorentz violationに対して高い感度の実験が期待できる （乱暴ですが）ニュートリノ振動を二重スリットの干渉として考える
a）
 b） ニュートリノ振動でフレーバーが変わる のをを二重スリットの干渉の結果として解釈する

元々の $v \mu$ の v Iと $v 2$ の干渉具合が，何らか の相互作用（VIとV2の郡速度が変化）によ

$$
\bigcap^{v_{\mu}} \rightarrow \overbrace{}^{n} \rightarrow \Omega^{v_{2}} \rightarrow \bigcap^{v_{1}} \rightarrow \text { って変わり, 新しい混ざり具合veになる }
$$

地球の自転位置によって真空ベクトル場の向きが変わるので，
恒星時間によって，ニュートリノ振動の位相が変わる（厳密には郡速度の違いで は振動は起きない）
位相差～ $\mathbf{\Delta m}^{\mathbf{2}}$／Energy～Ie－2I GeV（＠IGeV neutrino）
\rightarrow プランクスケールの物理に感度あり！

Lorentz violation測定：座標系

－座標系：太陽中心座標系（この業界では一般的）

MiniBooNE beamline

Z軸：地球の自転軸
X軸：秋分点の方向
Y軸：右手系座標になるように選択
真空ベクトル場は太陽系内で均一と仮定理由：
真空スカラ一場は地球でも遠方の星でも不変 （星の燃焼メカニズム）
\rightarrow 真空ベクトル場も同程度で均一といっても おかしくない

Neutrino beam line is described in Sun－centered coordinate

Lorentz violation測定：ニュートリノ振動

－Effective Hamiltonian for $v a \rightarrow v b$ w／SME coefficient（ $\mathrm{a}, \mathrm{c}_{\mathrm{L}}$ ）
$\left(h_{\text {eff }}\right)_{a b}=|\vec{p}| \delta_{a b}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\frac{1}{2|\vec{p}|}\left(\begin{array}{cc}\left(\tilde{m}^{2}\right)_{a b} & 0 \\ 0 & \left(\tilde{m}^{2}\right)_{a b}^{*}\end{array}\right)$
Lorentz violation

$$
+\frac{1}{|\vec{p}|}\left(\begin{array}{cc}
{\left[\left(a_{L}\right)^{\mu} p_{\mu}-\left(c_{L}\right)^{\mu \nu} p_{\mu} p_{\nu}\right]_{a b}} & -i \sqrt{2} p_{\mu}\left(\epsilon_{+}\right)_{\nu}\left[\left(g^{\mu \nu \sigma} p_{\sigma}-H^{\mu \nu}\right) \mathcal{C}\right]_{a b} \\
i \sqrt{2} p_{\mu}\left(\epsilon_{+}\right)_{\nu}^{*}\left[\left(g^{\mu \nu \sigma_{0}} p_{\sigma}+H^{\mu \nu}\right) \mathcal{C}\right]_{a b}^{*} & {\left[-\left(a_{L}\right)^{\mu} p_{\mu}-\left(c_{L}\right)^{\mu \nu} p_{\mu} p_{\nu}\right]_{a b}^{*}}
\end{array}\right)
$$

－P：momentum
－（For anti－neutrino， CPT－odd $\mathrm{a}_{\mathrm{L}} \rightarrow$－aL）
－＂Neutrino oscillation＂probability（ex：shot－baseline \rightarrow neutrino mass term negligible）

$$
\begin{aligned}
P_{\nu_{\mu} \rightarrow \nu_{e}} \simeq & \left.\left.\left.\left.\frac{L^{2}}{(\hbar c)^{2}} \right\rvert\,(\mathcal{C})_{e \mu}\right)+\left(\mathcal{A}_{s}\right)_{e \mu}\right) \sin \omega_{\oplus} T_{\oplus}+\left(\mathcal{A}_{c}\right)_{e \mu}\right) \cos \omega_{\oplus} T_{\oplus} \\
& \left.+\left(\left(\mathcal{B}_{s}\right)_{e \mu}\right) \sin 2 \omega_{\oplus} T_{\oplus}+\left(\mathcal{B}_{c}\right)_{e \mu}\right)\left.\cos 2 \omega_{\oplus} T_{\oplus}\right|^{2}
\end{aligned}
$$

$\mathrm{A} \sim \mathrm{C}: \mathrm{a}_{\mathrm{L}}, \mathrm{C}_{\mathrm{L}}$ combination
sidereal frequency $\omega_{\oplus}=\frac{2 \pi}{23 h 56 m 4.1 s}$ sidereal time $\quad T_{\oplus}$ Solar time ： 24 h 00 m 0.0 s

$$
\begin{aligned}
(\mathcal{C})_{e \mu} & =\left(\mathcal{C}^{(0)}\right)_{e \mu}+E\left(\mathcal{C}^{(1)}\right)_{e \mu} \\
\left(\mathcal{A}_{s}\right)_{e \mu} & =\left(\mathcal{A}_{s}^{(0)}\right)_{e \mu}+E\left(\mathcal{A}_{s}^{(1)}\right)_{e \mu} \\
\left(\mathcal{A}_{c}\right)_{e \mu} & =\left(\mathcal{A}_{c}^{(0)}\right)_{e \mu}+E\left(\mathcal{A}_{c}^{(1)}\right)_{e \mu} \\
\left(\mathcal{B}_{s}\right)_{e \mu} & =E\left(\mathcal{B}_{s}^{(1)}\right)_{e \mu} \\
\left(\mathcal{B}_{c}\right)_{e \mu} & =E\left(\mathcal{B}_{c}^{(1)}\right)_{e \mu}
\end{aligned}
$$

＂Sidereal time independent param．＂と＂time dependent param．＂の計5つをフィットして求める

Sidereal time ：23h 56m 4．Is \rightarrow 3m55．9s diff．

実際には簡単な右式の3 $\quad P_{\nu_{\mu} \rightarrow \nu_{e}} \simeq \frac{L^{2}}{(\hbar c)^{2}}\left|(\mathcal{C})_{e \mu}+\left(\mathcal{A}_{s}\right)_{e \mu} \sin \omega_{\oplus} T_{\oplus}+\left(\mathcal{A}_{c}\right)_{e \mu} \cos \omega_{\oplus} T_{\oplus}\right|^{2}$ パラメータの場合も使う
\rightarrow Assuming nature only has CPT－odd SME coefficients

LSND experiment

LSND is a short－baseline neutrino oscillation experiment at Los Alamos．

$$
\begin{aligned}
\overline{\boldsymbol{\nu}}_{\mu} \xrightarrow{\text { oscillation }} \overline{\boldsymbol{\nu}}_{e}+p \rightarrow & e^{+}+n \\
& n+p \rightarrow d+\gamma
\end{aligned}
$$

LSND saw the 3.8σ excess of electron antineutrinos from muon antineutrino beam；since this excess is not understood by neutrino Standard Model，it might be new physics

LSND experiment

LSND is a short－baseline neutrino oscillation experiment at Los Alamos．

$$
\begin{aligned}
\bar{\nu}_{\mu} \xrightarrow{\text { oscillation }} \bar{\nu}_{e}+p \rightarrow & e^{+}+n \\
& n+p \rightarrow d+\gamma
\end{aligned}
$$

LSND saw the 3.8σ excess of electron antineutrinos from muon antineutrino beam；since this excess is not understood by neutrino Standard Model，it might be new physics

Data is consistent with flat solution，but sidereal time solution is not excluded．
—— data
－flat solution
$\cdots \cdots$ 3－parameter fit
$-\cdots$ 5－parameter fit

Small Lorentz violation could be the solution of LSND excess

MiniBooNE

－Short base line neutrino oscillation experiment＠Fermi lab（2002－2012）
－Primary goal ： $\mathrm{v} \mu \rightarrow$ ve appearance search
－Change Horn current direction \rightarrow Neutrino／Anti－Neutrino mode
－Oscillation peak $\sim 800 \mathrm{MeV}$（for neutrino）$/ \sim 600 \mathrm{MeV}$（for anti－neutrino）

Magnetic focusing horn

secondary beam
－

MiniBooNE detector

tertiary beam
（700 MeV neutrinos）

Ve appearance

Cherenkov detector（ 12.2 m ）
veCCQE事象を解析に使用
－ 800 ton of mineral oil（CH2） － 8 inch PMT $\times 1280$（inner）

MiniBooNE oscillation analysis Mmboone omboration： ArXiv：1109．3480

－Single Cherenkov ring，Electron－like
$E_{\nu}^{Q E}=\frac{2\left(M_{n}-B\right) E_{\mu}-\left(\left(M_{n}-B\right)^{2}+m_{\mu}^{2}-M_{p}^{2}\right)}{2 \cdot\left[\left(M_{n}-B\right)-E_{\mu}+\sqrt{E_{\mu}^{2}-m_{\mu}^{2}} \cos \theta_{\mu}\right]}$
－Main Back ground
－NCாOからのgammaの一つをelectron とmisIDする
－測定したNCT0 production rate を simulationに入れる
－Intrinsic beam ve
－Contamination＜0．5\％～appearance contribution＝0．5\％

- $\nu \mu(a n t i-\nu \mu)$ rateを測定し，simulationに入れる $\pi^{+} \rightarrow \nu_{\mu} \mu^{+}, \mu^{+} \rightarrow \bar{\nu}_{\mu} \nu_{e} e^{+}$
- SciBooNEの測定から不定性（Kaon production）を抑える
\rightarrow ve appearance Signal／all background～I／3 at oscillation

Neutrino mode result（Ve appearance search）

Pick up Excess of ve at low－E（＜475MeV） \rightarrow Ve app．candidate
－Obs．： 544 events／6．46e20 POT
－Exp．： 409.8 ± 23.3（stat．）± 38.3（syst．）
Not predicted by neutrino Standard Model（vSM）
\rightarrow New physics？
Anti－neutrino mode result（anti－ve appearance search）

Excess in low－E \＆high－E（475～1300MeV）
Combine both region
\rightarrow anti－Ve app．candidate
－Obs．：24I events／5．66e20 POT
－Exp．： $200.7 \pm$ I5．5（stat．）± 14.3（syst．）
Not predicted by neutrino Standard Model（vSM）
\rightarrow New physics ？

Tinneqdependent Systennatics $\begin{aligned} & \text { MiniBooNE collaboration，} \\ & \operatorname{ArXiv}: 1109.3480\end{aligned}$

時間情報：GPS time stamp（local solar time）\rightarrow Solar time／sidereal timeの変換に注意 POT time distribution ：不安定

Check Time dependent systematics（day－night effects）（ex：electronics noise） High Stat $v \mu$ CCQE sample to check all of these effect

Flat POT normalized distribution
\rightarrow ふらつきは主にビーム運転状況
（夜：Maximum POT \rightarrow 昼：減少）
データ取得が1年間を通して均一でないと，
24h周期のふらつきが恒星時間の関数
（23h56m4．Is）で現れる
\rightarrow 最大 3% の 24 h周期の揺らぎ＜Stat fluctuation
\rightarrow Flat Background time distribution を仮定

Sidereal time oscillation

Maximize Unbinned likelihood using PDF based on sidereal time oscillation probability

At 5 params fitting，fit errors are big due to the strong correlations of params
\rightarrow Do fitting w／ 3 params（remove Bs and Bc）

Neutrino mode：
－Flat distribution is best
－C（time－independent）is dominant
－ 26.9% compatibility assuming flat distribution

Anti－Neutrino mode：
－Fit solutions look more different from the flat
－Non－zero（As）e μ and（Ac）e μ solution Only 3% compatibility assuming flat distribution
＊Anti－Neutrino解析は全体の半分
のデータしか入っていない

Limits for SME coefficiency

各SMEパラメータに対して，le－19～1e－20 GeVの制限をつけた
Table 1．List of SME coefficient limits，derived from 2σ limits of fitting parameters，setting all but one of the SME coefficients to be zero．

Coefficient	$\mathrm{e} \mu$（ ν mode low energy region）	$\mathrm{e} \mu$（ $\bar{\nu}$ mode combined region）
$\overline{\operatorname{Re}\left(a_{L}\right)^{T} \text { or } \operatorname{Im}\left(a_{L}\right)^{T}}$	$4.2 \times 10^{-20} \mathrm{GeV}$	$2.6 \times 10^{-20} \mathrm{GeV}$
$\operatorname{Re}\left(a_{L}\right)^{X}$ or $\operatorname{Im}\left(a_{L}\right)^{X}$	$6.0 \times 10^{-20} \mathrm{GeV}$	$5.6 \times 10^{-20} \mathrm{GeV}$
$\operatorname{Re}\left(a_{L}\right)^{Y}$ or $\operatorname{Im}\left(a_{L}\right)^{Y}$	$5.0 \times 10^{-20} \mathrm{GeV}$	$5.9 \times 10^{-20} \mathrm{GeV}$
$\operatorname{Re}\left(a_{L}\right)^{Z}$ or $\operatorname{Im}\left(a_{L}\right)^{Z}$	$5.6 \times 10^{-20} \mathrm{GeV}$	$3.5 \times 10^{-20} \mathrm{GeV}$
$\operatorname{Re}\left(c_{L}\right)^{X Y}$ or $\operatorname{Im}\left(c_{L}\right)^{X Y}$	－	－
$\operatorname{Re}\left(c_{L}\right)^{X Z}$ or $\operatorname{Im}\left(c_{L}\right)^{X Z}$	1.1×10^{-19}	6.2×10^{-20}
$\operatorname{Re}\left(c_{L}\right)^{Y Z}$ or $\operatorname{Im}\left(c_{L}\right)^{Y Z}$	9.2×10^{-20}	6.5×10^{-20}
$\operatorname{Re}\left(c_{L}\right)^{X X}$ or $\operatorname{Im}\left(c_{L}\right)^{X X}$	－	－
$\operatorname{Re}\left(c_{L}\right)^{Y Y}$ or $\operatorname{Im}\left(c_{L}\right)^{Y Y}$	－	－
$\operatorname{Re}\left(c_{L}\right)^{Z Z}$ or $\operatorname{Im}\left(c_{L}\right)^{Z Z}$	3.4×10^{-19}	1.3×10^{-19}
$\operatorname{Re}\left(c_{L}\right)^{T T}$ or $\operatorname{Im}\left(c_{L}\right)^{T T}$	9.6×10^{-20}	3.6×10^{-20}
$\operatorname{Re}\left(c_{L}\right)^{T X}$ or $\operatorname{Im}\left(c_{L}\right)^{T X}$	8.4×10^{-20}	4.6×10^{-20}
$\operatorname{Re}\left(c_{L}\right)^{T Y}$ or $\operatorname{Im}\left(c_{L}\right)^{T Y}$	6.9×10^{-20}	4.9×10^{-20}
$\underline{\operatorname{Re}\left(c_{L}\right)^{T Z} \text { or } \operatorname{Im}\left(c_{L}\right)^{T Z}}$	7.8×10^{-20}	2.9×10^{-20}

これらの制限は，LSNDの超過データをLorentz violationで説明で きるSMEパラメータの値を棄却

Double Chooz

－Reactor neutrino oscillation experiment in France
－anti－ve disappearance
－Used data in Lorentz violation ：2011 4／I3～20125／I5（227．9 live days）
－Same used for latest result ： $\sin ^{2} 2 \theta_{13}=0.109 \pm 0.03$（stat）$\pm 0.025$（syst）

Double Chooz oscillation analysis

－Select anti－Ve $+\mathrm{P} \rightarrow \mathrm{e}^{+}+\mathrm{n}$（inverse beta decay：IBD）
－Delayed double coincidence $\rightarrow 8249$ events

TABLE V．Summary of observed IBD candidates，with corre－ sponding signal and background predictions for each integration period，before any oscillation fit results have been applied．

	Reactors Both On	One Reactor $P_{\text {th }}<20 \%$	Total
Livetime［days］	139.27	88.66	227.93
IBD candidates	6088	2161	8249
ν reactor B1	2910.9	774.6	3685.5
ν reactor B2	3422.4	1331.7	4754.1
Cosmogenic isotope	174.1	110.8	284.9
Correlated FN \＆SM	93.3	59.4	152.7
Accidentals	36.4	23.1	59.5
Total prediction	6637.1	2299.7	8936.8

TABLE VI．Summary of signal and background normalization uncertainties in this analysis relative to the total prediction．

Source	Uncertainty［\％］
Reactor flux	1.67%
Detector response	0.32%
Statistics	1.06%
Efficiency	0.95%
Cosmogenic isotope background	1.38%
FN／SM	0.51%
Accidental background	0.01%
Total	2.66%

Background time dependency

Total background in oscillation analysis $=497$ events

Accidental coincidence （Ex：Environment $\gamma+$ Fast neutron）

Fast neutron＋stop μ Fast－n \rightarrow captured on Gd
Stop $\mu \rightarrow$ delay

9－Lithium
$9 \mathrm{Li} \rightarrow \mathrm{e}-+\mathrm{N}+8 \mathrm{Be}$ （ $\mathrm{T} \sim 200 \mathrm{msec}$ ）

There comes from cosmic ray \rightarrow Check muon veto rate stability
Maximum variation of muon veto rate（sidereal time）$\sim 0.5 \%$ \rightarrow BG variation in time $\sim 0.03 \%$ effect for diapp．prob．\rightarrow Negligible

Event rate Time－dependency

Background－subtracted IBD event rate

－Physics run（I時間）毎では安定
－MC expectation（IBD cross－section，flux， detector response，etc）varied run－by－run

Thermal core operation
－Time interval＜Imin
－Power uncertainty $\sim 0.5 \%$ of total

- 0～23．934 hours（I sidereal day）を24binsに分割
- MC normalization はDAQ time stampに基づく各ランの測定時間に応じて run－by－runに計算（Nominal anti－ve spectrum normalized by Bugey 4）
－Human activities（cores turned on／off，detector calibration，etc）によるday－night effect を MC prediction に well－accounted
－Correlated uncertainties associated human activities are included a covariance matrix（include all stat \＆syst errors）

Neutrino oscillation from Lorentz violation

In 3 active flavor neutrino oscillation framework

$$
\begin{aligned}
& P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}} \simeq 1-\frac{\left|\left(h_{\mathrm{eff}}\right)_{\bar{e} \bar{\mu}}\right|^{2} L^{2}}{(\hbar c)^{2}}-\frac{\left|\left(h_{\mathrm{eff}}\right)_{\bar{e} \bar{\tau}}\right|^{2} L^{2}}{(\hbar c)^{2}} \\
& \operatorname{Prob}(\text { anti-Ve } \rightarrow \text { anti- } \mathrm{V} \mu \text {) } \\
& L^{2} \quad \operatorname{Prob}(\text { anti-ve } \rightarrow \text { anti-VT) } \\
& =1-\frac{L}{(\hbar c)^{2}}\left[\mid(\mathcal{C})_{\bar{e} \bar{\mu}}+\left(\mathcal{A}_{s}\right)_{\bar{e} \bar{\mu}} \sin \omega_{\oplus} T_{\oplus}+\left(\mathcal{A}_{c}\right)_{\bar{e} \bar{\mu}} \cos \omega_{\oplus} T_{\oplus}\right. \\
& +\left(\mathcal{B}_{s}\right)_{\bar{e} \bar{\mu}} \sin 2 \omega_{\oplus} T_{\oplus}+\left.\left(\mathcal{B}_{c}\right)_{\bar{e} \bar{\mu}} \cos 2 \omega_{\oplus} T_{\oplus}\right|^{2} \\
& 10 \text { amplitude } \\
& +\mid(\mathcal{C})_{\overline{\bar{\epsilon}} \bar{\tau}}+\left(\mathcal{A}_{s}\right)_{\bar{e} \bar{\tau}} \sin \omega_{\oplus} T_{\oplus}+\left(\mathcal{A}_{c}\right)_{\bar{e} \bar{\tau}} \cos \omega_{\oplus} T_{\oplus} \\
& 5 \text { free parameters } \\
& \left.+\left(\mathcal{B}_{s}\right)_{\bar{e} \bar{\tau}} \sin 2 \omega_{\oplus} T_{\oplus}+\left.\left(\mathcal{B}_{c}\right)_{\bar{e} \bar{\tau}} \cos 2 \omega_{\oplus} T_{\oplus}\right|^{2}\right] \\
& \rightarrow \text { Too much \& complicated }
\end{aligned}
$$

＂e－T fit＂：assumption $\mathrm{P}(\rightarrow$ anti－ $\mathrm{V} \mu)=0$

$$
\begin{aligned}
P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}} \simeq & 1-\frac{L^{2}}{(\hbar c)^{2}}\left[\mid(\mathcal{C})_{\bar{e} \bar{\tau}}+\left(\mathcal{A}_{s}\right)_{\bar{e} \bar{\tau}} \sin \omega_{\oplus} T_{\oplus}\right. \\
& +\left(\mathcal{A}_{c}\right)_{\overline{\bar{\tau}}} \cos \omega_{\oplus} T_{\oplus}+\left(\mathcal{B}_{s}\right)_{\bar{e} \bar{\tau}} \sin 2 \omega_{\oplus} T_{\oplus} \\
& \left.+\left.\left(\mathcal{B}_{c}\right)_{\bar{e} \bar{\tau}} \cos 2 \omega_{\oplus} T_{\oplus}\right|^{2}\right]
\end{aligned}
$$

Double Choozの最大感度を考える と，同時にフィットしても，あまり得はしない
＂e－p fit＂：assumption $\mathrm{P}(\rightarrow$ anti－VT $)=0$ ，

$$
\begin{aligned}
P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}} \simeq & 1-\frac{L^{2}}{(\hbar c)^{2}}\left[\mid(\mathcal{C})_{\bar{e} \bar{\mu}}+\left(\mathcal{A}_{s}\right)_{\bar{e} \bar{\mu}} \sin \omega_{\oplus} T_{\oplus}\right. \\
& \left.+\left.\left(\mathcal{A}_{c}\right)_{\bar{e} \bar{\mu}} \cos \omega_{\oplus} T_{\oplus}\right|^{2}\right]
\end{aligned} \quad \text { (remove CPT-even coefficients } \quad \text { as MINOS, MiniBooNE) }
$$

Lorentz－violating analysis result

－Least square fitting $\mathrm{w} /$ total error matrix（stat＋correlated syst） for BG－subtracted data

$\begin{aligned} & \text { X2/ndf } \\ & \text { e- } \mu \text { fit : 28.8/2I } \\ & \text { e-T fit : 27.7/I9 } \\ & \text { flat fit : } 30.6 / 23 \end{aligned}$	For both fit，time independent C is dominated
$\Delta \mathrm{X} 2=\mathrm{X} 2$（flat hypothesis）－ X 2 （min）	
$\rightarrow \Delta \mathrm{X} 2$（data）$<\Delta \mathrm{X} 2$（pesudo－exp）	
－e－μ fit ：41．8\％	
－e－T fit ：60．0\％	

No time dependent indication

BF parameter 2σ limit

$\left.\begin{array}{lcc} & \left(10^{-20} \mathrm{GeV}\right)\end{array}\right]$| $(\mathcal{C})_{\bar{e} \bar{\tau}}$ | 5.8 | 7.8 |
| :--- | :---: | :---: |
| $\left(\mathcal{A}_{s}\right)_{\bar{e} \bar{\tau}}$ | -0.4 | 6.6 |
| $\left(\mathcal{A}_{c}\right)_{\bar{e} \bar{\tau}}$ | 0.4 | 7.0 |
| $\left(\mathcal{B}_{s}\right)_{\bar{e} \bar{\tau}}$ | 0.0 | 5.4 |
| $\left(\mathcal{B}_{c}\right)_{\bar{e} \bar{\tau}}$ | 0.5 | 5.4 |
| $(\mathcal{C})_{\bar{e} \bar{\mu}}$ | 5.8 ± 1.7 | - |
| $\left(\mathcal{A}_{s}\right)_{\bar{e} \bar{\mu}}$ | -0.4 ± 0.7 | 1.9 |
| $\left(\mathcal{A}_{c}\right)_{\bar{e} \bar{\mu}}$ | 0.5 ± 0.8 | 5.5 |

Limits on SME coefficients by constant $X 2$ Ex：I $\sigma(2 \sigma)$ limit $w /$ constant $\Delta X 2=5.9(11.3)$ for e－T fit（5 params）
＂Norm－fit w／only C＂＝＂Rate－only θ_{13} analysis＂ \rightarrow 今の測定精度では Lorentz violation と（mass， θ_{13} oscillation の結果が区別できない

Summary

－Standard Modelを拡張することで，我々の現在のエネルギー領域でもLorentz violationの測定ができる（かも）
－すでに多くの実験でLorentz violationの解析がされているが，兆候はまだ見つかっ ていない
－LSNDやMiniBooNE（anti－neutrino mode）でSidereal modulationっぽいものが見えて いるが，両者の結果は矛盾する
－各振動モードでの現在のパラメータ制限
－ $\mathrm{ve} \Leftrightarrow \mathrm{v} \mu:<l \mathrm{e}-20 \mathrm{GeV}$（LSND，MiniBooNE，MINOS）
－ $\mathrm{V} \mu \Leftrightarrow \mathrm{Vt}:<\mathrm{le}-23 \mathrm{GeV}$（MINOS，IceCube）
－ $\mathrm{Ve} \Leftrightarrow \mathrm{vt}:<\mathrm{le}-2 \mathrm{I} \mathrm{GeV}$（Double Chooz）
－MiniBooNE anti－neutrinoのフルデータ解析や，別の解析アプローチ，宇宙物理から の制限など，まだやることはある（と思う）

2．Modern tests of Lorentz violation

 http：／／www．physics．indiana．edu／～kostelec／faq．htmlThe last meeting of Lorentz and CPT violation was in summer 2010.
Next meeting will be in summer 2013

Topics：

＊searches for CPT and Lorentz violations involving
birefringence and dispersion from cosmological sources clock－comparison measurements
CMB polarization
collider experiments
electromagnetic resonant cavities
equivalence principle
gauge and Higgs particles
high－energy astrophysical observations
laboratory and gravimetric tests of gravity
matter interferometry
neutrino oscillations
oscillations and decays of K, B, D mesons
particle－antiparticle comparisons
post－newtonian gravity in the solar system and beyond
second－and third－generation particles
space－based missions
spectroscopy of hydrogen and antihydrogen
spin－polarized matter
＊theoretical studies of CPT and Lorentz violation involving
physical effects at the level of the Standard Model，General Relativity，and beyond origins and mechanisms for violations
classical and quantum issues in field theory，particle physics，gravity，and strings

Back up

Sidereal time（恒星時間）

－春分点の見かけの日周運動によって計られる時間
恒星時は春分点の時角として定義される（あるいは，その時に真南に見える星の赤経 としても定義できる）。春分点が子午線を通過する時，すなわち赤経0時の線がちょ うど頭上にある時にその場所の地方恒星時は00：00である。グリニッジ恒星時はイギ リス・グリニッジでの子午線（本初子午線）上で測った春分点の時角である。

まず，日本標準時（JST）から9時間を引き，世界時（UT）を求める。
世界時（UT）＝日本標準時（ST）－9時
UTの現在のグレゴリオ暦での年をY，月をM，日をD，時間をh，分をm，秒をsとする。ただし，1月と2月 はそれぞれ前年（Yの値を－Iする）の13月，14月として代入する（例：2010年1月1日の場合，Y＝2009，M＝13， $\mathrm{D}=\mathrm{I}$ ）。このときユリウス通日（JD）は，次の式で求められる。
$J D=[365.25 Y]+\left[\frac{Y}{400}\right]-\left[\frac{Y}{100}\right]+[30.59(M-2)]+D+1721088.5+\frac{h}{24}+\frac{m}{1440}+\frac{s}{86400}$
［］の記号は小数点以下を切り捨て整数だけをとる意味とする。次に，TJD（Truncated Julian Day－NASAが導入した世界時1968年3月24日0時からの日数）を次の式で求める。
$T J D=J D-2440000.5$
平均春分点に準拠するグリニッジ恒星時（歳差のみを考慮に入れた平均恒星時）は，次の式で求めること ができる（hは時間の単位。度数法で表記された角度を15で割ったものと同じ）。
$\bar{\theta}_{G}=24^{h} \times(0.671262+1.0027379094 \times T J D)$

Sidereal time（恒星時間）

Solar time（24h）と Sidereal time
（23h56m04s）の違い

2．What is CPT violation？

CPT symmetry is the invariance under CPT transformation

$$
\mathrm{L} \xrightarrow{\mathrm{CPT}} \Theta \mathrm{~L} \Theta^{-1}=\mathrm{L}^{\prime}=\mathrm{L}, \quad \Theta=\mathrm{CPT}
$$

CPT is the perfect symmetry of the Standard Model，due to CPT theorem

CPT－odd Lorentz violating coefficients（odd number Lorentz indices，ex．， $\mathrm{a}^{\mu}, \mathrm{g}^{\lambda \mu \nu}$ ） CPT－even Lorentz violating coefficients（even number Lorentz indices，ex．， $\mathrm{c}^{\mu \nu}$ ，$\kappa^{\alpha \beta \mu \nu}$ ）

L－E diagram

Fig．4．L－E diagram with the $\nu \mathrm{SM}$（two straight dotted lines）and the Puma model（two dashed and solid curves）．

MiniBooNE Unbined likelihood

$$
\Lambda=\frac{e^{-\left(\mu_{s}+\mu_{b}\right)}}{N!} \prod_{i=1}^{N}\left(\mu_{s} \mathcal{F}_{s}^{i}+\mu_{b} \mathcal{F}_{b}^{i}\right) \times \frac{1}{\sqrt{2 \pi \sigma_{b}^{2}}} \exp \left(-\frac{\left(\bar{\mu}_{b}-\mu_{b}\right)^{2}}{2 \sigma_{b}{ }^{2}}\right)
$$

N ，the number of observed candidate events
μ_{s} ，the predicted number of signal events，the function of fitting parameters
μ_{b} ，the predicted number of background events，floating within 1σ range
\mathcal{F}_{s} ，the PDF for the signal，the function of sidereal time and fitting parameters
\mathcal{F}_{b} ，the PDF for the background，not the function of the sidereal time
σ_{b} ，the 1σ error on the predicted background
$\bar{\mu}_{b}$ ，the central value of the predicted total background events

