T2K実験の最新結果: ニュートリノビームと前置 ニュートリノ検出器の解析結果

村上明(京都大学)、T2K Collaborator 2011/7/I,「フレーバー物理の新展開」研究会2011

Contents of T2K report

☑ 振動解析(ve appearance)の手法とスーパーカミ オカンデの測定と振動解析の結果について

T2K experiment

(ICRR, Univ. Tokyo)

TZK

Physics run start from 2010.1. Goals

Search for ve appearance $(v_{\mu} \rightarrow v_{e})$

Precise measurement of ν_{μ} disappearance ($\nu_{\mu} \rightarrow \nu_{x}$)

2011年7月1日金曜日 **term in** $V_{\mu} \rightarrow V_{e}$ **prob.** $\propto \sin \delta \cdot s_{12} \cdot s_{23} \cdot s_{13}$

T2K Collaboration T2K ~500 collaborators, 59 institutions, 12 countries

Ve appearance

→ Possible to measure CP violation in lepton sector

T2K overview

- High stat. ν experiment (high proton beam intensity)
- Super-Kamiokande(SK) as far neutrino detector
- Off-axis beam method (optimize to oscillation, less background)
- Event synchronization (near/far) with GPS
- ✓ NA6I(@CERN) → Precise prediction of neutrino flux for oscillation analysis

Off-Axis beam method

Need to control beam direction precisely (< Imrad)

Beam line component

* Difference of the beam sizes is due to difference of

Near detector

(Univ. of Toronto, York U INGRID (On-axis near dete Neutrino beam direction/intensity monito

Mark Hartz

for the T2K Collaborati

Event display of INGRID DATA.

CCQE candidate (v+n \rightarrow µ⁻+P)

Electron-like and muon-like event at SK

Particle identification using ring shape & opening angle

私は20分ほど前まで前置検出器ホール地下で作業 → KEK東海一号館

→ 2日ほど東海村で避難生活

ニュートリノビームダンプ周辺

→ 6月には地中の電気工事、

埋め立て完了

→ 宇宙線測定進行中。INGRIDな どは問題ないことを確認済み!

2011年7月1日金曜日

J-PARC復旧スケジュール (@2011.5.20)

ニュートリノグループとしては

月中にビーム受け入れ準備完了

今年中にビーム試験を開始する!

Physics Run 1&2 (2010.1~2011.3)

Accumulated # of protons

Total # of protons used for analysis is 1.43 x 10²⁰ protons = 2% of T2K's final goal

Primary proton beam measurement

MUMON measurement

INGRID measurement

Select neutrino event in FV

- Coincident hits in X-Y plane & Timing cut \rightarrow Reject accidental hits
- Reconstruct one track.
- Select vertex inside fiducial volume \rightarrow Veto sand muon, cosmic

INGRID measurement

24

INGRID measurement

Reconstructed neutrino beam profile center (monthly)

- Horizontal: -0.014±0.025 (stat.)±0.33 (syst.) mrad
- Vertical: -0.107±0.025 (stat.)±0.37 (syst.) mrad

→ Input for oscillation analysis

Count # of neutrino events at ND280

Inclusive v_{μ} charged current (CC) events with FGD-TPC

- Reconstruct track & matching of FGD-TPC
- No track in TPC1 \rightarrow Veto sand muon
- \geq I negative charge track in TPC2(or TPC3)
- Track start fiducial volume of FGDI (or FGD2)
- TPC PID \rightarrow Select negative particle

Count # of neutrino events at ND280

2011年7月1日金曜日

Summary of this talk

- T2K実験は2010年I月から物理ランをスタートし、2011年3月 まででI.43x10²⁰ # of protons (2% of design)の統計を貯めた。
 - 各検出器は期待通りに動作し、ニュートリノビームを安定して生成することができた。
 - ▶ 振動解析のインプットとして以下の結果を使用する:
 - ビームラインモニターによる陽子ビームの情報
 - INGRIDによるニュートリノビームの方向
 - ND280による振動前のニュートリノ数
- 次の講演者がve appearanceの最新結果について報告。

Back up

am lin

Event sync. near/far with GPS

- Baseline measurement (GPS Survey)
 - L = 295,335 ± 7 m (ToF = 985.132 ± 0.02 µsec)

• DAQ synchronization

 Store events in ±500µsec window from exp. beam timing at SK:"T2K beam event"

Spill

timing

transfer

via

Network

Measure proton beam @Target

Estimate beam position, width, angle @Target by extrapolation of profile measurements.

Proton beam measurement

2011年7月1日金曜日

Proton beam measurement

- Shot-by-shot accumulated beam profile on target
 - Gaussian assumption for shot-by-shot beam profile
- Targeting efficiency
 - Geometrical overlap b/w 2D gaussian beam and upstream target surface.

MR-run

x'(mrad)

 $\sigma_{\rm mm}$

MR-run

y'(mrad)

 σ (mm)

α

v(mm)

α

x(mm)

Target ϕ =26mm

Beam measurement of MUMON

Beam generation is stable in whole period

Systematic error of profile center of MUMON

Error source	Profile center		Beam direction	
	$\Delta x \ (\mathrm{cm})$	$\Delta y \ ({ m cm})$	$\Delta \theta_x \text{ (mrad)}$	$\Delta \theta_y \text{ (mrad)}$
Alignment	0.63	0.65	0.054	0.055
Sensor gain uncertainty	0.08	0.30	0.007	0.026
Profile asymmetry	1.25	1.12	0.106	0.095
Beam dump non-uniformity	0.38	0.38	0.032	0.032
Tilted beamline effect	—	0.22	—	0.019
Chamber/silicon discrepancy	0.55	1.77	0.047	0.150
Total	1.56	2.26	0.132	0.192

- Profile asymmetry: due to asymmetric or non-Gaussian beam profile.
- Chamber/silicon discrepancy: due to difference of nearby structure silicon moving stage(7.5mm thick aluminum plate)

good spill selection

- 1. physics run (run_type is "physics run" and all Horn ON)
 - exclude spills for beam tuning, beam study
- 2. TriggerFlag is "Beam Trigger" (it means that beam during MR operation)
- 3. Good GPS status
- CT05 # of protons per spill > 1e11 in order to exclude spills which no beam in MR (due to machine interlock etc..)
- 5. normal condition cut
 - exclude unusable spills (e.g. PV2 unstable etc..)
- 6. Horn cut
 - nominal ±5kA for all the three Horns
- 7. Mumon cut
 - beam angle within 1mrad (abs(Si fit x) < 10cm and abs(Si fit y) <10cm)
 - Si total Q / CT05 cut : nominal \pm 5%

Data taking efficiency

Select good quality data for analysis.

DAQ alive & good event sync b/w J-PARC and SK.
Stable beam operation & monitoring.

# of protons	Runl	Run2	Total
Total delivered	3.35×10 ¹⁹	1.12×10 ²⁰	1.46×10 ²⁰
Physics Run	3.28×10 ¹⁹	1.12×10 ²⁰	1.45×10 ²⁰
Good spill	3.26×10 ¹⁹	1.12×10 ²⁰	1.45×10 ²⁰
SK Good spill	3.23×10 ¹⁹	I.II×I0 ²⁰	1.43×10 ²⁰

98% data used for oscillation analysis in Run I & 2.

INGRID Performance

Detector	Total ch.	Bad ch.
INGRID	10796	0.17%

Hit efficiency

ND280

Count # of neutrino before oscillation with trackers

ND280 performance

ent

ND280 measurement

Systematic error of INGRID, ND280

INGRID

Item	Error[%]
Iron mass	0.1
Accidental MPPC noise	0.7
Beam related background	0.2
Fiducial selection	1.1
Hit efficiency	1.8
Tracking efficiency	1.4
Track matching selection	2.7
Not beam-related background	< 0.1
p.e./active layer selection	< 0.1
Beam timing selection	< 0.1
Total	3.7
	*

-ND280-		50.95	
		<u></u>	
Source	Section	OI . sys. +	err sys -
TPC1 veto	9.1	0.850.012	0.012
TPC eff	9.2	0.8	0.020
TPC ch misid	9.3	0.01	0.01
TPC-FGD match	9.4	0.750.021	0.021
FV	9.5	0.70 / 1	2 /3
FGD mass	9.5	0.005	0.005
T_0	9.6	0.001	/
highest mom tk	9.7	/	/
(PID pull width	9.8.3	0.030	/
Low gain MM	9.8.2	0.004	0.004
pile-up	9.9	0.009	0.009
cosmics	10.1	/	0.004
Out of FGD	10.3	0.009	0.009
Total		0.042	0.036
• Nucleon Eject	tion: -2	.7% Phys	ics syst.
■ FSI tuning· +	0.7%		J .1 %

- FSI tuning: $\pm 0.7\%$
- Kinematical variation $M_A + M_V$: $\pm 2.4\%$

beam difection measurements

 averaged beam center position (L≈280m) horizontal : +0.2±1.4(stat.)±9.2(syst.) cm vertical : -6.6±1.5(stat.)±10.4(syst.) cm corresponds to 0.37mad uncertainty
 beam direction is controlled within << 1mrad