Flux uncertainty and Flux covariance

Beam group

Contents

- Current flux uncertainty & covariance
- Update study for flux uncertainty

Latest released flux uncertainty : I lav2.1

- The first version of flux uncertainty based on 11av2 tuned flux
- Detail here <u>http://www.t2k.org/beam/NuFlux/FluxRelease/11arelease/</u>
 <u>11av2p1covariance</u>
 - Main topic is to <u>update Kaon flux uncertainty by using NA61 Kaon data</u>.
 - Already reported at last collabo. meeting
 - Release with only coarse binning for flux covariance matrix
 - Include Ve-bar uncertainty for sources where it has been evaluated
 - Update the proton beam error with Run 2 y-y' uncertainties (tentatively use the different method (JReWeight) from evaluation for 2010a).
 - Include horn&target alignment and horn absolute current using variations evaluated for 2010a analysis

What is in this covariance?

- Flux covariance for $v_{\mu}^{}$, $\overline{v_{\mu}^{}}$, $v_{e}^{}$ and $\overline{v_{e}^{}}$ at ND5 and SK detector planes
- Error Sources:
 - <u>Pion production</u> updated for 11av2 tuning
 - Kaon production updated for 11av2 tuning

→Update from 2010a analysis

- <u>Secondary nucleon production</u> same as 10dv3
- Production cross sections same as 10dv3
- <u>Off-axis angle</u> no nu_e-bar errors at this time (10dv3 errors)
- Proton beam errors y-y' errors calculated with JReWeight
- Horn&Target alignment no nu_e-bar errors at this time (10dv3 errors)
 →Basically same
- <u>Horn absolute current</u> same as 10dv3

→Basically same as 2010a analysis

Should be used with the 11av2 flux tuning

12年1月27日金曜日

Format of I lav2.1 flux covariance matrix

- The covariance provided is the fractional covariance of the flux as a function of the true neutrino energy
- There are 20 true neutrino energy bins for each detector/flavor (GeV):

0.0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-1.0, 1.0-1.2, 1.2-1.5, 1.5-2.0, 2.0-2.5, 2.5-3.0, 3.0-3.5, 3.5-4.0, 4.0-5.0, 5.0-7.0, 7.0-10.0, >10.0

- The ordering of the bins in the covariance are:
- **1)** ND5 v_{μ} bins 0-19 **2)** ND5 \overline{v}_{μ} bins 20-39
- **3)** ND5 v bins 40-59 **4)** ND5 v bins 60-79
- **5)** SK v_{μ} bins 80-99 **6)** SK \overline{v}_{μ} bins 100-119

7) SK v bins 120-139 **8)** SK v bins 140-159

Total flux covariance matrix (I lav2.I)

Fractional flux covariance matrix for V_{μ} , anti- V_{μ} , V_e and anti- V_e at ND5 and SK detector planes

SK flux uncertainty

 \rightarrow Flux uncertainty at the high energy region reduced drastically

ND5 flux uncertainty

Assume we have the flux in the ith energy, detector and flavor bin: Φ_i

The value of the flux is varied through a systematic parameter b_i , which has a nominal value of 1

$$\Phi_i \rightarrow b_i \Phi_i$$

The fractional flux covariance describes the covariance of the b_i

The errors from the covariance can be propagated by:

- Prior constraint on the *b_i* in a fit (see BANFF fits) Usage example is shown in
- Through draws of the b_i (Cholesky Decomp. Method) BANFF or
- Calculation of the error propagation through the b_i oscillation dependence in the expected values of observables analysis talk!

11/24/11

10

What Is this release Missing?

- No ve-bar errors for off-axis angle, target alignment or horn alignment errors
- Not final proton beam uncertainty errors
- No horn field asymmetry errors
- No horn angular alignment errors

Now studies about these errors are going on.
 → Will be added in next flux uncertainty (for some parts soon after collabo.)

Update for flux uncertainty

- Off axis angle flux uncertainty (Minor update)
- Proton beam flux uncertainty (Minor update)
- Horn angular alignment flux uncertainty
- Horn field asymmetry flux uncertainty

Off-axis angle uncertainty

- The following factors cause flux uncertainty
 - The deviation of the beam direction from the beam-axis.
 - Stat. error of the beam direction measurement.
 - Beam direction uncertainty from INGRID detector systematic error
- Current error estimated by only Runl data.
 - We controlled neutrino beam better in RunII than RunI → Flux uncertainty will be reduced for RunII data.

Update of off-axis angle

Beam profile center in Runl for 2010a flux uncertainty

	x	y
Profile center (cm)	0.2 ± 1.4 (sta.) ± 9.2 (sys.)	$-6.6 \pm 1.5 (sta.) \pm 10.4 (sys.)$
Beam direction (mrad)	$0.01 \pm 0.05 (sta.) \pm 0.33 (sys.)$	$-0.24 \pm 0.05 (sta.) \pm 0.37 (sys.)$

Beam profile center in INGRID technote (#41, v7.2)

Beam center from the INGRID center	X center[cm]	Y center[cm]
RUN1 + RUN2	$-0.4 \pm 0.7 \pm 9.2$	$-3.0 \pm 0.7 \pm 10.4$
RUN1 only	$0.4\pm1.4\pm9.2$	-8.6 ± 1.5
RUN2 only	$-0.7 \pm 0.8 \pm 10.4$	-1.4 ± 0.8

- Difference of RunI beam profile center between two tables. →
 INGRID latest tech-note are correct.
- Correct values written in technote#54 ("Beam update for 2010a"), but used values for 2010a flux uncertainty are still old (incorrect).
 - Transfer of information might not work well.

Estimate flux uncertainty by using corrected off-axis angle uncertainties

Updated flux uncertainty

- Off-axis uncertainty decreases from Old to Runl&II : I~2% (absolutely)
 - For ND $\nu\mu$, flux uncertainty also decrease by this level

Proton beam uncertainty

- Only RunI proton beam position/angle uncertainty was considered for 2010a flux uncertainty.
 - For I lav2.1, use the different method (JReWeight)
- Uncertainties of beam center position/angle during RunII are larger than RunI → Consider this effect by same method as 2010a analysis's.
 - Mass production to estimate this by using special wide proton beam flux samples going on → finish in few days.

Ru	Inl beam D	aramete	ers				Run I	Run II
	center position	center angle	profile width	emittance	Twiss parameter	width in X (mm)	0.11	0.26
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	α	width in Y (mm)	0.97	0.82
X V	-0.037 0.084	0.044 0.004	0.4273 0.4167	2.13 2.29	0.60	Twiss α in X	0.32	0.26
	0.001	0.001	0.1101	2.20	0.05	Twiss α in Y	1.68	0.49
<u>Runll beam parameters</u>				position in $X(mm)(x)$	0.38	0.27		
	center position	center angle	profile width	emittance	Twiss parameter	position in $Y(mm)(y)$	0.58	0.62
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	α	$\mathbf{F} = \mathbf{F} = $		0.001
Х	-0.0149	0.080	0.4037	5.27	0.16	angle in \mathbf{X} (mrad) (x)	0.050	0.064
Y	-0.0052	-0.007	0.4083	5.17	0.14	angle in Y (mrad) (y')	0.286	0.320
		2 3)				$\operatorname{cov}(x,x')$	0.011	0.013
						$\operatorname{cov}(y, y')$	0.065	0.079

Proton beam uncertainty

Horn angular alignment uncertainty

Martin Tzanov

<u>Alignment surveys have been done in 2009 – TN-039.</u>

Axis	Unertainty
X	0.3 mm
Y	I.0 mm
Z	I.0 mm

• For Horn-2 and Horn-3 angular uncertainty is less than 1 mrad. however we will use 1 mrad to study the effect.

• For Horn-1 the uncertainty in the Y-axis is obtained with respect to the main beamline. We will use 0.3mm as 1σ uncertainty in Y since Horn-1 main beamline misalignment is accounted also by beam angle uncertainty.

- Rotation of Horn-1 causes rotation of the Target since they are firmly attached. Expect sizable effect.
- → Estimate this effect by JNUBEAM (GCALOR)

- About 2-3% shape difference for the Vµ flux. Perhaps partially due to the tilt of the target.
 - For horizontal change, 2~3% shape difference around 1~2GeV
- About horn2&3, flux not change significantly
- About ND flux, same results as SK
- Next: Estimate this effect by FLUKA

Horn field asymmetry

- Measurements made to verify replacement horn I field and check for asymmetry.
- Nominal azimuthal field tested at instrumentation ports with 3-axis Hall probe, and asymmetry field tested on-axis with Hall probe and pickup coil.
- Found instead "anomalous" field with unusual time dependence

Anomalous On-Axis Field: Time Dependence

- Peak field on-axis offset from peak current by 0.7ms
- Decays exponentially with time constant 0.826 (1/ms) after shaped current pulse.

Anomalous On-Axis Field: Variation along horn axis

Pickup Coll on Im probe mount
3-axis Hall probe on 2m probe mount

- Field measured along entirety of horn axis with long axial probe mount.
- Field reaches maximum value of (0.057,0.035,0)T near middle of horn.

Anomalous On-Axis Field: Effect on Neutrino Flux

- Upper bound of effect on neutrino flux found by implementing in beam MC maximum measured field (0.057, 0.035,0.0)T everywhere inside inner conductor of just horn I (top) and all 3 horns (bottom). Effect less than 2% for most energy bins.
- Now progress in study → Will add flux uncertainty (next next version)

Summary

- Already provide latest flux uncertainty (11av2.1) and covariance for oscillation analysis.
- Plan to finalize next release of flux uncertainty (11av3.1) toward 2011 oscillation analysis.
 - Include errors from updated NA61 Kaon results.
 - Update about Off axis angle & proton beam flux uncertainty
 - Include flux uncertainty related horn angular alignment and asymmetric field.
- Tech-note(#99) about flux uncertainty for 2011 analysis nearly complete and under internal review.