Pbeam flux uncertainty

A.Murakami

Effect of hadron tuning on proton beam flux uncertainty

- Compare proton beam flux unc. w/ hadron tuning with one w/o hadron tuning
 - Compare flux unc. by using same 10d wide beam flux samples for two cases (w/ & w/o hadron tuning)
- If no the systematic difference, can use FLUKA2011 for this study
- Hadron tuning setting:
 - Pion : latest pion tuning
 - Kaon: latest kaon tuning
 - Other : no tuning

Flux unc. w/ & w/o hadron tuning (ND5)

8 9 1 Ev [GeV]

10

nd5 numub error

nd5 nueb error

0.015

0.005

0.01

0₀

1

2

3

4

5

6

7

Flux unc. w/ & w/o hadron tuning (SK)

sk numu error

sk numub error

sk nueb error

- There is no large systematic difference b/w two cases → Small effect of hadron tuning
 - At a maximum, I~2% difference for high energy region (except for NuMu).
- It is possible to use FLUKA2011 to estimate flux unc.
 - Can change proton beam parameters & increase MC stat.
- Now, generate new wide beam FLUKA inputs by FLUKA2011 and jnubeam flux with new wide flux.

New wide beam flux sample

- Make new wide beam flux sample whose emittance in Y is larger than previous wide beam flux sample.
 - Thanks for Suzuki-san to generate this FLUKA-input by FLUKA2011

The beam parameters to generate previous wide beam sample analysis

	center position	center angle	profile width	emittance	Twiss parameter
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	lpha
Х	-0.037	0.044	0.4273	2.13	0.60
Υ	0.084	0.004	0.42	5.04	0.0
<u>I he</u>	<u>e beam param</u>	<u>eters to ger</u>	nerate new v	wide b <mark>e</mark> am sa	mple 11a analysis
<u>Ihe</u>	e beam param center position	eters to ger center angle	profile width	wide beam sa emittance	<u>mple</u> 11a analysis Twiss parameter
<u> he</u>	<u>e beam param</u> center position (cm)	eters to ger center angle (mrad)	profile width (RMS)(cm)	$\frac{\text{wide beam sa}}{\text{emittance}} (\pi \text{ mm.mrad})$	$\frac{\text{mple}}{\text{Twiss parameter}} \frac{11a \text{ analysis}}{\alpha}$
	<u>e beam param</u> center position (cm) -0.037	eters to ger center angle (mrad) 0.044	profile width (RMS)(cm) 0.4273	$\frac{\text{wide beam sa}}{\text{emittance}} \\ (\pi \text{ mm.mrad}) \\ 2.13$	$\frac{\text{mple}}{\text{Twiss parameter}} \frac{11a \text{ analysis}}{\alpha}$ $\frac{\alpha}{0.60}$

Checking MC stat. error

- Generate 1000 files (200k trigger/file) by FLUKA2011 inputs
 - When run JNUBEAM, low energy suppression turned on for all neutrino flavors (default setting) → MC stat. at low energy large.
 - Will generate jnubeam flux with no low energy suppression excepted for numu.
- Check the error size of MC stat. and proton beam weighting (wide proton beam → actual proton beam)
 - Use 1000 wide beam flux files
 - Apply only proton beam weighting (for Runl/Runll).
 - No hadron tuning.

Runl : Fractional error (ND5)

Runl : Fractional error (SK)

Runll : Fractional error (ND5)

Runl : Fractional error (SK)

- Large fluctuation for Run II beam proton weighting
- Again, check the Run II proton beam parameter
 - Find that emittance in x-x' of Run II is larger than one of wide beam samples (next page).
 - Re-weighting from small emitt. to large emitt. can cause large fluctuation.

Emittance in X

- Take careful for only for the emittance in y-y', not in x-x'.
 - At proton beam weighting, emittance in x-x' also used.
- In T2K Run II, the emittance in x-x' also larger than in Run I.

	center position	center angle	profile width	emittance	Twiss parameter
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	lpha
Х	-0.037	0.044	0.4273	2.13	0.60
Υ	0.084	0.004	0.4167	2.29	-0.09

Proton beam parameter (Runl) cs parameter for Run I

Proton beam parameter (RunII) parameter for Run2.

	center position	center angle	profile width	emittance	Twiss parameter
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	lpha
Х	-0.0149	0.080	0.4037	5.27	0.16
Y	-0.0052	-0.007	0.4083	5.17	0.14

Emittance in x-x' of wide beam flux = $2.13 \rightarrow \text{RunII}$ is large!!

 \rightarrow The proton weighting for x-x' may cause the high MC stat. error.

 \rightarrow Check the MC stat. at small emittance in x-x'.

Small emittance in x-x' for Runll

- When proton beam weighting by using RunII beam parameters, use the emittance of Run I instead of RunII (5.27 \rightarrow 2.13).
- Check the MC fluctuation by this weighting flux.

Proton beam flux uncertainty

- Back to estimation of the flux uncertainty. for RunII
 - Large flux uncertainty in RunII seems to be due to larger emit. in xx' in RunII.
 - Estimate flux uncertainty. for RunII by using emit. in x-x' in RunI
 - Postpone to estimate flux unc. with I Ia wide beam samples for RunII.
- Estimation method is not changed
 - do 1000 throws for y-y'
 - Use throwing samples whose $y_{y'}$ are within 2σ from mean value.
- Still MC stat. is not small (especially numubar&nue&nuebar)
 - Now generating more flux files by FLUKA2011

Y-Y' phase space

Use only throws whose y' difference from mean is within 2σ for estimation of flux uncertainty

Runl : ND5 Flux uncertainty

Runl: SK Flux uncertainty

RunII : SK Flux uncertainty

Summary

- Generate new wide beam flux sample with more larger the emittance in y-y' by using FLUKA2011
- Need larger emittance in x-x' for Runll proton beam weighting.
 - Tentatively, use Runl emittance in X instead of Runll value.
 - Need to generate larger emit. in x-x' in near future.
 - There are still some fluctuation.
- Plan to use the flux uncertainties estimated by I Ia wide beam samples as updated flux uncertainties.
 - Now, re-generate JNUBEAM flux w/ I Ia wide beam samples w/o low energy suppression for numubar/nue/nuebar → Expect to decrease fluctuation at low energy.
 - After this process, I estimate flux uncertainty (in near future).

back up