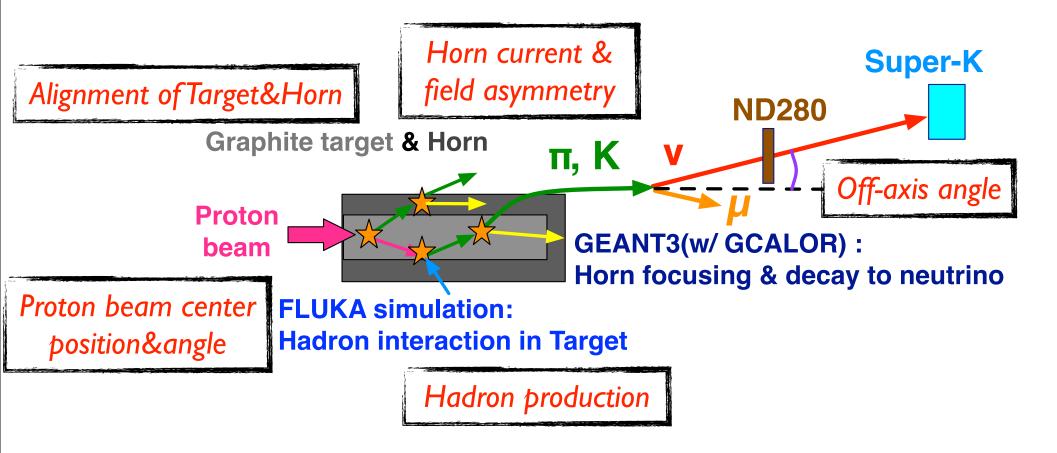
Introduction of beam analysis toward Dec. face-to-face oscillation analysis meeting


Beam group

Contents

- Review of current flux uncertainty
- Update of flux uncertainty in Dec. analysis meeting at Tokai
- Current study status

Flux uncertainty components

Overview of flux simulation and components of flux uncertainty

Flux uncertainty comes from each components uncertainty.

Current flux uncertainty in 2010a nue analysis

 $\sin^2 2\theta_{23} = 1$, $\Delta m^2_{23} = 2.4 \times 10 - 3 \text{ eV}^2$ and $\sin^2 2\theta_{13} = 0.1(0.0)$ for ve $(\nu \mu)$

Hadron production	on .	Percent Errors of expected number of events				
Source	N_{ND}	$N_{SK}(1 \operatorname{Ring} \mu)$	$N_{SK}(\nu_e \text{ Sig.})$	$N_{SK}(\nu_e \text{ Bgnd.})$	$N_{SK}(\nu_e \text{ Tot.})$	
Pion Multiplicity	5.53	5.47	6.86	6.04	6.06	
Tertiary Pion scaling	1.39	1.76	1.32	1.12	1.27	
Kaon Multiplicity	10.01	10.63	1.76	11.71	4.21	
Prod. Cross Sections	7.65	7.12	11.61	6.66	10.39	
Sec. Nucleon Multiplicity	5.87	6.35	6.76	6.55	6.69	
Proton Beam	2.22	1.78	1.05	0.04	0.80	
Off-axis Angle	2.65	3.19	2.07	2.09	2.08	
Target Alignment	0.26	0.34	0.08	0.05	0.05	
Horn Alignment	0.57	0.52	0.41	0.47	0.42	
Horn Abs. Current	0.47	0.08	1.23	0.71	1.11	
Total	15.43	15.83	15.48	16.35	14.92	
					·	

Already update: I lav2.x (as reported Collabo. or ASG meeting)

Investigate to update for the Dec. analysis meeting or near future.

Make the flux covariance matrix for the global analysis by using flux uncertainty.

Hadron production

Production Type	v _µ Fraction for SK	v Fraction for SK	
Secondary π p	70%	40% - FLUKA is compared Pion/Kaon data.	l with NA61
Secondary K p K [±] ,K ⁰ p	8%	- About not covered use interpolated dat experiment (Eichter	a of other
Secondary nucleon → Terr	tiary π,K	- For secondary nucle	
p $\pi^{\pm}, K^{\pm}, \dots$	16%	14% production, FLUKA in with the experiment	•
$n \rightarrow \pi^{\pm}, K^{\pm}, \dots$	5%	- For tertiary pion/kad production, the same 5% secondary pion/kaor method (w/ scaling u	e error as n by scaling

Proton beam parameters

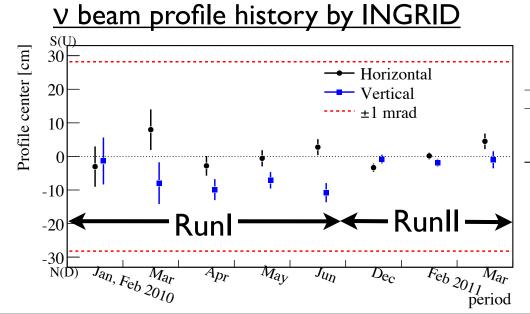
- Only Runl proton beam position/angle uncertainty was considered for 2010a flux uncertainty.
- Uncertainties of beam center position/angle (especially in Y) during
 Runll period are larger than Runl period → Better to be update

Runl beam parameters

	center position	center angle	profile width	emittance	Twiss parameter
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	α
X	-0.037	0.044	0.4273	2.13	0.60
Y	0.084	0.004	0.4167	2.29	-0.09

Runll beam parameters

	center position	center angle	profile width	emittance	Twiss parameter
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	α
X	-0.0149	0.080	0.4037	5.27	0.16
Y	-0.0052	-0.007	0.4083	5.17	0.14


TN054(v2.3)

Proton beam uncertainty

	Run I	Run II
width in X (mm)	0.11	0.26
width in Y (mm)	0.97	0.82
Twiss α in X	0.32	0.26
Twiss α in Y	1.68	0.49
position in $X(mm)(x)$	0.38	0.27
position in $Y(mm)(y)$	0.58	0.62
angle in X (mrad) (x')	0.056	0.064
angle in Y (mrad) (y')	0.286	0.320
cov(x, x')	0.011	0.013
cov(y, y')	0.065	0.079

Off-axis angle

- The following factors cause flux uncertainty
 - The deviation of the beam direction from the beam-axis.
 - Stat. error of the beam direction measurement.
 - Beam direction uncertainty from INGRID detector systematic error
- Current error estimated by only Runl data.
 - We controlled neutrino beam better in RunII than RunI → Flux uncertainty will be reduced for RunII data.

Summary of INGRID beam profile measurements

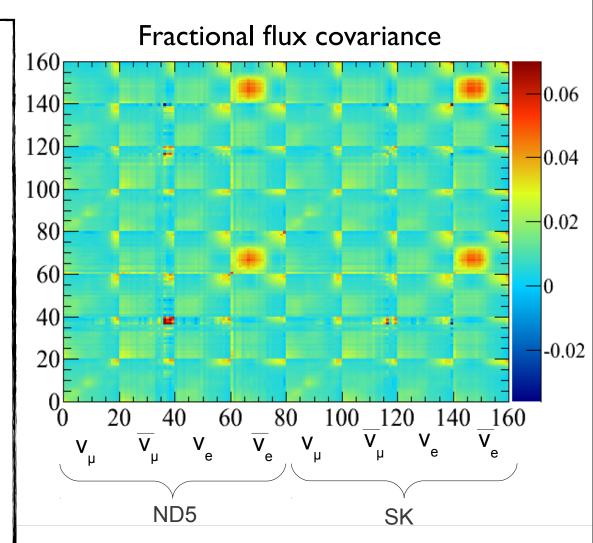
Beam center from the INGRID center	X center[cm]	Y center[cm]
RUN1 + RUN2	$-0.4 \pm 0.7 \pm 9.2$	$-3.0 \pm 0.7 \pm 10.4$
RUN1 only	$0.4 \pm 1.4 \pm 9.2$	-8.6 ± 1.5
RUN2 only	$-0.7 \pm 0.8 \pm 10.4$	-1.4 ± 0.8

Toward face-to-face Dec. analysis meeting

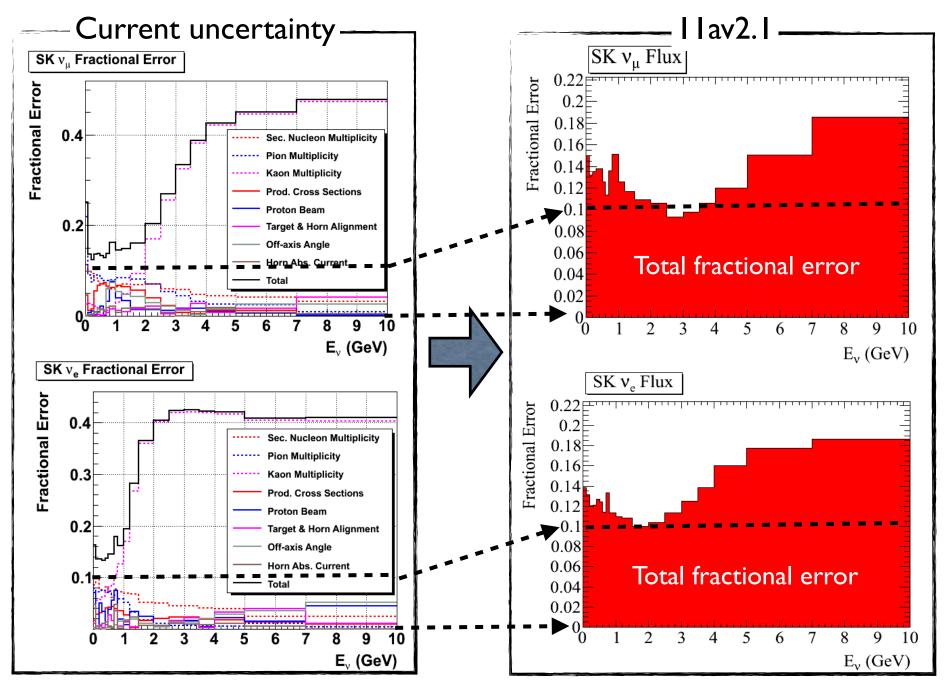
- Already release I lav2. I flux uncertainty
- Will release flux uncertainty I lav2.2 around Dec. analysis meeting.
 - (At least) Establish the format of flux covariance matrix for 2011a analysis.
- Will discuss about the problem for the overflow bin (>10GeV) in the I lav2 tuning histograms.
- Followings studies for 2011a (or near future) analysis are ongoing
 - Proton beam & off-axis angle uncertainty by using RunII data and same method as for 2010a analysis
 - Compare FLUKA2011/2008
 - Horn field & angular alignment uncertainty
 - Consider MUMON measurement for off-axis uncertainty

And so on...

Note of I lav2.1, v2.2 uncertainty


- I Iav2. I uncertainty: already released (http://www.t2k.org/beam/NuFlux/FluxRelease/I Iav2p I covariance)
 - Include Kaon flux uncertainty by using NA61 Kaon data.
 - The NA61/SHINE kaon results are now publicly available as e-Print: arXiv:1112.0150 [hep-ex], CERN-PH-EP-2011-199, and submitted to Phys. Rev. C
 - Release with only coarse binning for flux covariance matrix
 - Include nu_e-bar uncertainty for sources where it has been evaluated
 - Update the proton beam error with Run 2 y-y' variations (tentatively use the different method (JReWeight) from evaluation for 2010a).
 - Include horn/target alignment and horn absolute current using variations evaluated for 2010a
- I lav2.2 uncertainty:
 - Include finely binned covariance that can be used for binning studies
 - Include missing nu_e-bar uncertainties at I lav2. I
 - Include results of some studies about flux uncertainties if ready

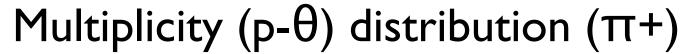
Flux covariance matrix (1 lav2.1)


Flux covariance for V_{μ} , anti- V_{μ} , V_{e} and anti- V_{e} at ND5 and SK detector planes

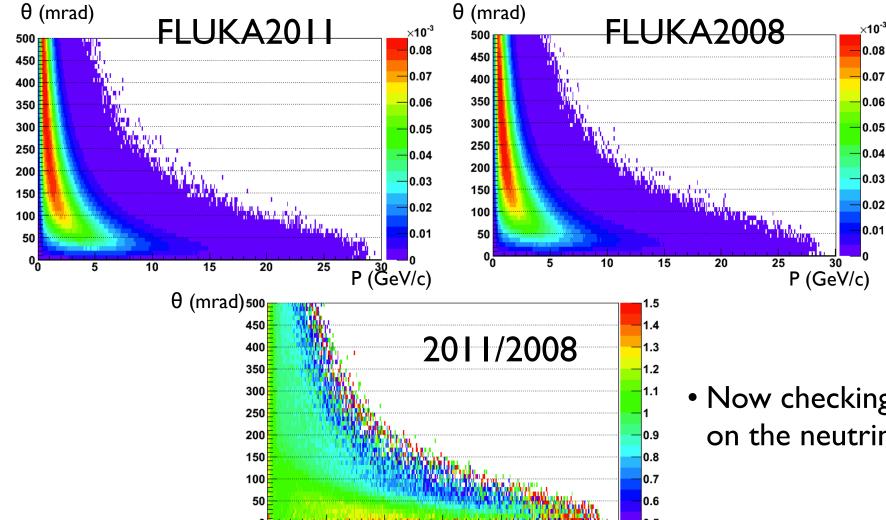
Error Sources:

- Pion production : updated for 11av2 tuning
- Kaon production : updated for 11av2 tuning
- Secondary nucleon production : same as 10dv3
- Production cross sections : same as 10dv3
- Off-axis angle: no nu_e-bar errors at this time (10dv3 errors)
- Proton beam errors : y-y' errors calculated with JReWeight
- Horn&Target alignment : no nu_e-bar errors at this time (10dv3 errors)
- Horn absolute current : same as 10dv3

Update flux uncertainty (1 lav2.1)


→ Flux uncertainty at the high energy region reduced drastically

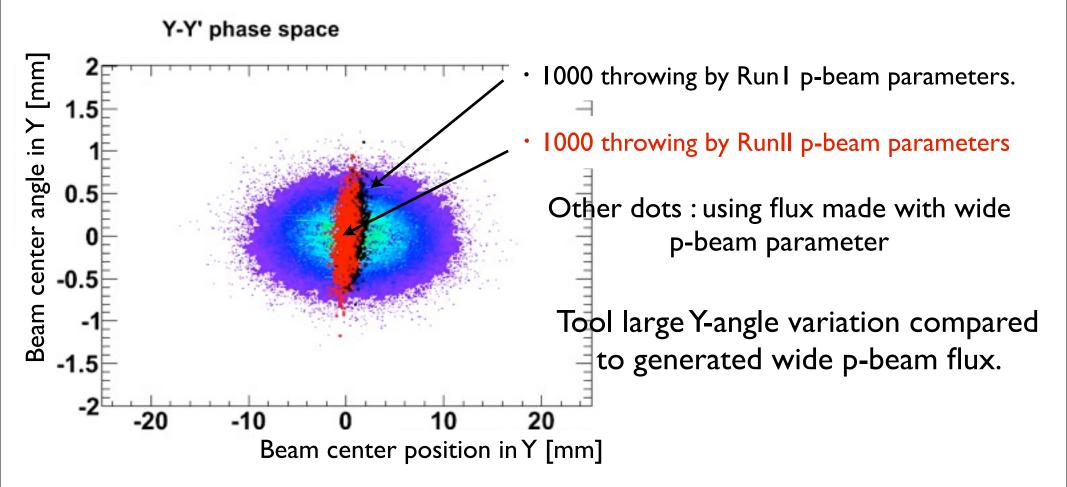
Overflow bin in tuning histogram


k.suzuki

- I lav2 tuning histograms have no entry above I0GeV (overflow region).
- The tuning factors for flux are the ratio of tuned/nominal flux. So the factor above IOGeV is 0.
 - All events with neutrino energy > 10GeV are weighted to 0.
- Now Suzuki-san is updating the I lav2 tuned histograms which include the overflow bin.
 - At Dec. meeting, will report the studies of the overflow bin.
 - Expect to release fixed I lav2 tuning histograms after Dec. analysis meeting.

Comparison FLUKA2011/2008

K.suzuki



 Now checking the effect on the neutrino flux

Back up

Update of proton beam uncertainty

 Estimate flux uncertainty from proton beam by using Runll data and the same method as 2010a

Discard throw samples with too large Y-angle to estimate uncertainty or more wider p-beam flux samples