Hogehoge

Beam group

Contents

- Review of current flux uncertainty
- Update of flux uncertainty in Dec. analysis meeting at Tokai
- Current study status

Flux uncertainty components

Overview of flux simulation and components of flux uncertainty

Current beam uncertainty in 2010a nue analysis

Hadron production	on	Percent Errors of expected number of events					
Source	N_{ND}	$N_{SK}(1 \operatorname{Ring} \mu)$	$N_{SK}(\nu_e \text{ Sig.})$	$N_{SK}(\nu_e \text{ Bgnd.})$	$N_{SK}(\nu_e \text{ Tot.})$		
Pion Multiplicity	5.53	5.47	6.86	6.04	6.06		
Tertiary Pion scaling	1.39	1.76	1.32	1.12	1.27		
Kaon Multiplicity	10.01	10.63	1.76	11.71	4.21		
Prod. Cross Sections	7.65	7.12	11.61	6.66	10.39		
Sec. Nucleon Multiplicit	y 5.87	6.35	6.76	6.55	6.69		
Proton Beam	2.22	1.78	1.05	0.04	0.80		
Off-axis Angle	2.65	3.19	2.07	2.09	2.08		
Target Alignment	0.26	0.34	0.08	0.05	0.05		
Horn Alignment	0.57	0.52	0.41	0.47	0.42		
Horn Abs. Current	0.47	0.08	1.23	0.71	1.11		
Total	15.43	15.83	15.48	16.35	14.92		

 $\sin^2 2\theta_{23} = 1$, $\Delta m^2_{23} = 2.4 \times 10-3$ eV² and $\sin^2 2\theta_{13} = 0.1(0.0)$ for ve (vµ)

Already update : I lav2.x (as reported Collabo. or ASG meeting)

Investigate to update for the Dec. analysis meeting or near future.

Make the flux covariance matrix for the global analysis by using flux uncertainty.

Hadron production

Production Type	<u>v</u> <u>Fraction</u> for SK	<u>v Fract</u> for	sk
$\frac{\text{Secondary } \pi}{p} \pi^{\pm}$	70%	40%	- FLUKA is compared with NA61 Pion/Kaon data.
Secondary K p	8%	39%	 About not covered by NA61, use interpolated data of other experiment (Eichten, Allaby).
Secondary nucleon → Tert	tiary π,K		- For secondary nucleon
<u>ρ</u> π [±] ,K [±] ,	16%	14%	production, FLUKA is compared with the experiment data.
<u> </u>	5%	5%	 For tertiary pion/kaon production, the same error as secondary pion/kaon by scaling method (w/ scaling uncertainty)

Proton beam center

- Consider only Runl proton beam position/angle uncertainty for current flux uncertainty.
 - Uncertainties of beam center position/angle (especially in Y) during RunII period are larger than RunI period

Runl beam parameters

Proton beam uncertainty

	center position	center angle	profile width	emittance	Twiss parameter
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	lpha
Х	-0.037	0.044	0.4273	2.13	0.60
Υ	0.084	0.004	0.4167	2.29	-0.09

Runll beam parameters

	center position	center angle	profile width	emittance	Twiss parameter
	(cm)	(mrad)	(RMS)(cm)	$(\pi \text{ mm.mrad})$	lpha
Х	-0.0149	0.080	0.4037	5.27	0.16
Υ	-0.0052	-0.007	0.4083	5.17	0.14

	Run I	Run II
width in X (mm)	0.11	0.26
width in Y (mm)	0.97	0.82
Twiss α in X	0.32	0.26
Twiss α in Y	1.68	0.49
position in $X(mm)(x)$	0.38	0.27
position in $Y(mm)(y)$	0.58	0.62
angle in X (mrad) (x')	0.056	0.064
angle in Y (mrad) (y')	0.286	0.320
$\operatorname{cov}(x,x')$	0.011	0.013
$\operatorname{cov}(y,y')$	0.065	0.079

Off-axis angle

- The following factors cause flux uncertainty
 - The deviation of the beam direction from the beam-axis.
 - Statistic error of the beam direction measurement.
 - Beam direction uncertainty from INGRID detector systematic error
- Current error estimated by only Runl data.
 - We controlled neutrino beam better in RunII than RunI \rightarrow Flux uncertainty to be small every T2K-Run period.

v Beam summary in INGRID

Beam center from the INGRID center	X center[cm]	Y center[cm]
RUN1 + RUN2	$-0.4 \pm 0.7 \pm 9.2$	$-3.0 \pm 0.7 \pm 10.4$
RUN1 only	$0.4\pm1.4\pm9.2$	-8.6 ± 1.5
RUN2 only	$-0.7 \pm 0.8 \pm 10.4$	-1.4 ± 0.8

Toward Dec. analysis meeting

- Already release | lav2. | flux uncertainty
- Release flux uncertainty I lav2.2 around Dec. analysis meeting.
 - (At least) Establish the format of flux covariance matrix for 2011a analysis.
- Many studies for 2011a/near future analysis investigated
 - Proton beam & off-axis angle uncertainty by using RunII data and same method as for 2010a analysis
 - Compare FLUKA2011/2008
 - Horn field & angular alignment uncertainty
 - Consider MUMON measurement for off-axis uncertainty
 - And so on...

Note of I lav2.1, v2.2 uncertainty

- I lav2.1 uncertainty: already released (<u>http://www.t2k.org/beam/NuFlux/</u> <u>FluxRelease/I larelease/I lav2p1 covariance</u>)
 - Include Kaon flux uncertainty by using NA61 Kaon data.
 - Release with coarse binning only for flux covariance matrix
 - Include nu_e-bar uncertainty for sources where it has been evaluated
 - Update the proton beam error with Run 2 y-y' variations (tentatively use the different method (JReWeight) from evaluation for 2010a).
 - Include horn/target alignment and horn absolute current using variations evaluated for 2010a
- I lav2.2 uncertainty:
 - Include finely binned covariance that can be used for binning studies
 - Include missing nu_e-bar uncertainties at 11av2.1
 - Include results of some studies about flux uncertainties if ready
 - Define to include which results in Dec. meeting ?

Flux covariance matrix (11av2.1)

Flux covariance for $\nu_{\mu},$ anti- $\nu_{\mu},$ ν_{e} and anti- ν_{e} at ND5 and SK detector planes

Error Sources:

- Pion production updated for 11av2 tuning
- Kaon production updated for 11av2 tuning
- Secondary nucleon production same as 10dv3
- Production cross sections same as 10dv3
- Off-axis angle no nu_e-bar errors at this time (10dv3 errors)
- Proton beam errors y-y' errors calculated with JReWeight
- Horn&Target alignment no nu_e-bar errors at this time (10dv3 errors)
- Horn absolute current same as 10dv3

Fractional flux covariance

Update flux uncertainty (Ilav2.I)

 \rightarrow Flux uncertainty at the high energy region reduce drastically

Update of proton beam uncertainty

 Estimate flux uncertainty from proton beam by using RunII data and the same method as 2010a

Y-Y' phase space

Discard throw samples with too large Y-angle to estimate uncertainty or more wider p-beam flux samples

FLUKA2011/2008

