

Analysis of INGRID detector data from beam commissioning :

efficiency and stability studies

M. Besnier , C. Bronner- 22-04-10

I- Scintillator efficiency

C. Bronner

Efficiency of scintillators principle

We want to evaluate the efficiency of scintillators.

For this we look for a scintillator failure: a track going through a scintillator without leaving a hit.

Data sample :

55 hours of cosmics data ($\sim 2.7*10^6$ events) MPPC overvoltage = 1.1V

"good track" selection : -track length>60cm (1/2 module)

- hit threshold= 5 pe

- etc....

Efficiency of scintillators Angle dependance

Inefficiency as a function of track angle

Monte Carlo study for efficiency

Use following model for a scintillator (dimensions in mm):

Green area is efficient White area is inefficient Data corresponds to cosmics data with 5 pe threshold, and different MPPC overvoltages

Added 0.35% constant inefficiency to MC

Module per module efficiency Cosmic data

Stat error taken as 1/Sqrt(entries)

All channels

T2K

Still a problem with module 3

<u>There is a problem for</u> <u>modules 1,3 and 5</u>

Efficiency results

Cosmics: 55 hours of cosmics data (~2.7*10⁶ events) Beam: All beam runs of Jan-feb-march 2010

MPPC overvoltage = 1.1V Threshold= 5 pe

	Cosmics	Beam
All	98.93%	97.00%
All -DC	98.98%	97.06%
All -DC -Mod3	99.02%	97.09%
Mod3	98.51%	96.80%

DC ≡ Dead Channels Mod3 ≡ Module #3

Results are still preliminary (might need debugging)

+ study including a time clustering with a lower npe threshold is needed.

From cosmic and MC study, efficiency for beam should be ~98.3% =>Efficiency is lower than predicted for beam

II- INGRID commissioning analysis and stability studies

Reconstruction and analysis of run 29,30 and 31

Total integrated intensity : 3.43 10¹⁸ pot with good spill

Number of reconstructed events :107102 Rµ events61730 neutrino events in FV

Details of the reconstruction \rightarrow see Otani san's presentation in nd280beam talk.

INGRID Event displays

INGRID Event displays

Stability of algorithms and detector response

Vertical tower should have ~5 % more neutrino events than horizontal bar

Evolution of the mean and width of neutrino profiles

Keep in mind : -no systematic errors -Rµ may be contaminated by neutrino events

Conclusion

- •Commissioning neutrino runs have been reconstructed and analysed.
- •First efficiency studies have been realised with beam and cosmic data.
- •The present results show a good stability of beam, algorithms and detector response.

INGRID activity

Akira murakami, kyoto-univ 4/23/2010 calibration & performance session at T2K collaboration meeting

Run29, 30, 31 data taking

- Data taking of Run29,30,31
 - Total # of proton by CT5 : 3.4e18 protons.
 - Total # of good spill : 1.7e5 spills.
- There was no trouble, no miss spill during DAQ running.

- Detector setting
 - ΔV of MPPC = 1.1 V
 - Integration time = 480 nsec
 - TDC threshold is 2.5 p.e.

Beam timing

Beam timing from expectation

Events in 100 nsec difference from expected beam timing calculated from CT5 timing are "on time" events.

Stability of data taking ~ beam related events ~

Status of INGRID Detector MC

- Progress in updating INGRID MC.
 - Add some detector responses.
 - There are other detector responses needed to add.
- Problem of neutrino vector (reported by Ichikawa-san) is discussed & improved.
- Comparison between MC and real data (cosmic, beam).
 - Now progress one by one.

Comparison with beam test (Ich)

Efficiency of each module (MC)

Efficiency = (# of events after neutrino event selection) / (# of neutrino interaction within modules)

Neutrino event selection will be reported by Otani-san in ND280-beam talk.

Summary

- Data taking of INGRID is stable.
 - No critical trouble and no miss spills during DAQ running.
- MC tuning & study is going on.
 - There are some effects needed to add more.
 - Comparison between MC and real data (beam, cosmic) is going on.
- MC will be used to estimate systematic errors.

Back up

Efficiency of scintillators Algorithm

Testing 3rd plane

Statistics

Scintillator per scintillator efficiency not regular for beam. Probably comes from statistics.

Cosmics: total entries= 32.693.787 stat error =0.017% for overall efficiency stat error ~1% for one channel Now trying to increase statistics **Beam**: total entries= 1.067.314 stat error = 0.097% for overall efficiency stat error ~10% for one channel

Example: module 0, Yoko TKP 4

Dead channels

There are 7 known dead channels, out of 7392 considered channels. This would give ~0.09% inefficiency.

Those channels were found by looking at their adc distribution, and are also seen by looking at their efficiency:

Scintillators efficiency of X plane 7 of module 5

We can see that channel #9 is a dead channel

Module 3 efficiency

Plane by plane efficiency for module 3

Y scintillators

All modules average efficiencies:

Y scintillators: 99.29%

X scintillators: 98.67%

X scintillators

Module 3 clearly has lower efficiency than other modules

Number of rock muons compared to

<u>neutrino events</u>

Friday, April 23, 2010

Number of events in each module

Number of neutrino events in each module comparison wrt number of events in module 10 (center vertical)

MC tuning item

- Fiber attenuation \rightarrow added to MC
- Scintillator quenching \rightarrow added to MC
- MPPC response \rightarrow added to MC
- MPPC dirk current noise \rightarrow not yet
- MPPC Fiber coupling constant \rightarrow not yet
- Hit efficiency for each channel \rightarrow not yet
- Hit time \rightarrow not yet
- Electric response (p.e. > ADC, time > TDC, logical delay) \rightarrow not yet

Many items are needed to consider. But, not need for install all of these item soon.

Variables for selection of beam event

- Active plane(Plane#0 is not used. only plane#1 ~ 10)
 - Coincidence hit at side and top view(TDC threshold = 2.5p.e.)
- p.e. / active layer
 - (Total p.e. in active planes) / (# of active planes \times 2)

Fiducial volume cut

Because there is a gap(10~20cm) b/w tracking planes and VETO, particle from out side can not be rejected.

We defined fiducial volume and selected the event whose vertex is within fiducial.

INGRID plan

N^{SK} from N^{INGRID} w/ systematic error by the July ASG meeting.

- Already done
 - N^{INGRID} with some syst. error
- Next step
 - Estimate rest of syst. error(next page) and finalize N^{INGRID} with some syst. error