INGRID MC Work

A.Murakami

New Jnubeam Flux

- Again INGRID MC by using the new Jnubeam Flux file (jnubeam 10b)
 - improve the problem that the same jnubeam flux entry is used some times.
- The check the neutrino energy spectrum.

Data set

- Jnubeam 10b(by kubo-san) × 1000 file ~ 1.5×10^7
- NEUT 80entries/file × 1000 file = 8e4 entries
- Only numu interactions

Neutrino energy spectrum

previous neutrino Flux (jnubeam 10a)

At high energy region, these are some peaks (because, same entries of one Flux file are used some times.)

After improved Flux(jnubeam10b) MC True neutrino energy (horizontals)

After improved Flux(jnubeam 10b) MC True neutrino energy (verticals)

- The peak at high energy region disappeared.
 - Improve the problem.

Beam Profile

- Check beam profile at each step (two primary proton beam condition).
 - Flux (nominal, x+2mm shifted): Flux into INGRID area.
 - Interact (nominal, x+2mm shifted): interact in modules
 - Observe (after "neutrino event selection", nominal, x+2mm shifted) : observe the events after "neutrino event selection".
- I want to check whether INGRID can measure the shift of beam profile when the primary proton beam is shifted from the center of the target.
- Now, consider only statistics error.

Beam Profile (horizontal) (Flux,nominal)

Beam Profile (horizontal) (Flux,x+2mm)

Beam Profile (horizontal) (observation, x+2mm)

More sensitive to the diff. of beam center from beam-axis by energy cut. \rightarrow But fitting error is large, need more statistics

Efficiency(E) of "neutrino selection"

• Calc. efficiency of event selection, which is same as beam data analysis.

Efficiency(E) = $\Phi_{obs}(E) / \Phi_{int}(E) \times 100$ [%] $\Phi_{obs} = #$ of events after event selection $\Phi_{int} = #$ of interactions in a module

 I also check the efficiency at each neutrino interaction mode (CC, CCQE, CC-nonQE, NC)

$$\begin{split} & \text{Efficiency}(\mathsf{E}) = \Phi^{\text{mode}}{}_{\text{obs}}(\mathsf{E}) \ / \ \Phi^{\text{mode}}{}_{\text{int}}(\mathsf{E}) \ \times \ \mathsf{I00} \ [\%] \\ & \Phi^{\text{mode}}{}_{\text{obs}} = \# \ \text{of events after event selection at each} \\ & \text{interaction mode} \\ & \Phi^{\text{mode}}{}_{\text{int}} = \# \ \text{of interactions in a module at each} \\ & \text{interaction mode} \end{split}$$

Efficiency(E) of "neutrino selection"

All neutrino interaction, at horizontal modules

Mean of efficiency(E) of horizontal modules

Efficiency (cut level 5, ALL)

Mean of efficiency(E) of horizontal modules

Mean of efficiency(E) of vertical modules

Total Efficiency at each module

Total Efficiency = $\int \Phi_{obs} (E) dE / \int \Phi_{int} (E) dE \times 100 [\%]$

- Diff. of total efficiency between modules is mainly due to the diff. of normalized neutrino energy (MC true information) spectrum.
- Show normalized spectrum by area at each modules (about all interaction mode).
 - Need check spectrum at each interaction mode.

Normalized neutrino energy spectrum (horizontal)

Normalized by area (energy<10GeV) (→ almost of entries is at low energy region)

Normalized neutrino energy spectrum (vertical)

Total Efficiency at each module

Total Efficiency at each module

module#	0	I	2	3	4	5	6
Total Efficiency (mean value)	32.2	33.I	34.3	33.5	34.2	33.6	33.2

module#	7	8	9	10	11	12	13
Total Efficiency (mean value)	31.9	34	34	34	35	33	32.7

- When the proton beam is shifted from the center of the target, the center of reconstructed beam profile by INGRID is also shifted large than the fitting error.
 - By selection of low neutrino energy (Energy < 3GeV), the shift of the profile by INGRID is larger (-8cm shift → -13cm shift).
- Try "reconstructed angle cut" to enhance low energy neutrino.