T2K実験ニュートリノビームモニター INGRIDにおけるビーム測定結果I

京大理,東大理^A,阪市大理^B 村上明,大谷将士,松村知恵^B,木河達也,鈴木研人,高橋将太, 南野彰宏,横山将志^A,山本和弘^B,市川温子,中家剛

Contents

- T2K experiment schedule
- Summary of INGRID data taking
- Data Analysis method (event selection)
- Detector simulation
- Basic plot
- Uncertainty of expected # of neutrino detection
- Summary

T2K experimental schedule

- 具体的にいつ何を行ったか。
 - Horn current setting やハードウェア作 業
 - 余り細かいことは省く。
 - POTの情報も載せたほうがよいかも。

INGRID data taking

- INGRID data taking efficiency
 - INGRID自身のスケジュール
 - といっても、ハードの作業はほぼないのであまり書くことはない。
 - good spill for ingrid の割合

Data analysis method

- MPPT over voltage
- Hit threshold
- Signal event を残したい。
 - Back groundになりうるものは?

Event selection I

- Time clustering cut
- # of active plane
- p.e. / layer > 6.5
- Beam timing cut

Event selection 2

- Tracking & track matching
- VETO cut
- Fiducial cut

Detector simulation

- ニュートリノイベントのシミュレート
 - Jnubeam(GEANT3)
 - NEUT
 - Detector MC(GEANT4)
- モジュール内でのニュートリノ反応のみを考慮
 - vertexは質量比で鉄とシンチに配分。Z方向 には一様に乱数を振る。

Detail

- p.e.の調整(エネルギースケールの調整)
 - Fiber attenuation, quenching effect, MPPC response.
- Reflect scintillator hit inefficiency

ベーシックプロット

- イベントカット後の各種変数の分布
- データセット
 - 実験データ:Run29~32
 - MC : numu (FLUKA2008)のみ
 - numubar : 5%. nue : 1%. nuebar : 1%以下 (Flux levelで)
- 各プロットはイベント数で規格化

ベーシックプロット

- # of active plane の分布とData/MC
 - 実データとMCで傾向が数%で一致。
- p.e. / layer の分布とData/MC
 - データに合うようにMCのパラメータを設定したのみ。改善の余地あり。

ベーシックプロット

- Tracking angle の分布とData/MC
 - 実データとMCが一致数%で一致
- Recon vertex Z (X) の分布とData/MC

検出効率

- ニュートリノイベントの検出効率の見積もり
- 検出器のパフォーマンスを示すという点では検出効率 の提示は重要。
 - どの程度の割合でモジュール内で反応したニュート リノを捕まえることが出来るのか。
 - そういう意味では"Detection efficiency" = 「どの程度 の割合でニュートリノを捕まえることが出来るの か」も必要か

Uncertainty of Nobs 2

- Effect of primary hadron production uncertainty.
 - GCALORとFLUKA2008の違い
 - 久保さんの過去の発表を参考にして、 どの程度までハドロン生成モデルについて説明するかを決める

Uncertainty of Nobs 2

- Effect of neutrino cross-section uncertainty
 - ただし、絶対値の不定性のスタディであることに注意。
 - 今後相対的な反応モードの不定性のスタディを行う。

まとめ

- INGRIDはニュートリノを直接観測することで、その ビーム方向を測定するT2K実験唯一のニュートリノビー ムモニターである。
- 2010年からの物理ランにおいて、INGRIDとして安定してデータ取得を行うことが出来た。
- 測定期間中、ニュートリノのイベントレートとビーム 方向はともに安定していた。
 - INGRIDはT2K実験におけるニュートリノ生成の安定 性を保証した。

Back up