T2K実験ニュートリノビームモニター INGRIDにおけるビーム測定結果I

京大理, 東大理^A, 阪市大理^B

<u>村上明</u>,大谷将士,松村知恵^B,木河達也,鈴木研人,高橋将太, 南野彰宏,横山将志^A,山本和弘^B,市川温子,中家剛 他T2Kコラボレーター

ニュートリノ観測数の見積もり

- 前回の学会から統計増 → ニュートリノ観測数の統計誤差小
- 観測したイベントがモジュール内でのニュートリノ反応であることの保証したい。
- 検出シミュレーションとデータの比較を行うことで検出
 - シグナルの理解、観測数の見積もり
- バックグラウンド数の見積もり(現在進行中)
 - 主なバックグラウンド:モジュール外でのニュートリノ反応で出てくる粒子がモジュールと反応.

検出器シミュレーション

- INGRIDでのニュートリノ検出のシミュレーションの構成
 - ニュートリノ生成→INGRID: Jnubeam (GEANT3)
 - INGRIDとニュートリノの反応: NEUT
 - ニュートリノ反応で生成された粒子の運動:GEANT4
- モジュール内で起きたニュートリノ反応のみを扱う。

● <u>壁でのニュートリノ反応は考慮していない(Study中)</u>

シミュレーションの不定性

- 主なシミュレーションの不定性として考えられるものの中
 で、主なもの
 - ニュートリノフラックス:~25%
 - ニュートリノの親ハドロン粒子生成に関する不定性.
 - ニュートリノ反応断面積:~30%
 - 全反応断面積の絶対値の不定性.
- 今回はハドロン生成に関する不定性について考慮する。

ニュートリノ生成の不定性

- T2K実験: P(30GeV) + C(Target) → Hadron(π ,K,...) → ν
- P+C を GCALORのハドロン生成モデルを用いて予測.
 - モデルの違いによる不定性は大きく、実験で測定する必要 あり(NA6I@CERN).
- 別のモデル(FLUKA2008)は実験データを良く再現。
- 今回は2種類のモデル(GCALOR, FLUKA2008)を使用

解析方法

イベントセレクション

(# of events after event selection) / (# of interaction in Fiducial volume)

データ vs シミュレーション

- イベントセレクション後の各種変数の分布の比較
- データ:2010年1月~6月の物理データ
- シミュレーション:νμのみ
 - anti-V_µ: 5%. V_e: 1%. anti-V_e: 1%以下 (at Flux to INGRID)
 - 2種類のニュートリノの親ハドロン粒子の生成モデルを使用 (GCALOR, FLUKA2008)
- イベント数で規格化
 - 分布の形が両者でどの程度合っているかを検証.

of active plane

GCALORでは最大~8%の差(at high # of active plane) → FLUKA2008では良く(**3%以内で**)再現

▶ 高エネルギーのニュートリノの割合の違い

(High energy $\nu \rightarrow$ High energy $\mu \rightarrow$ Long Track)

Tracking angle

GCALORでは最大~18%(at Low tracking angle)の差 → FLUKA2008では良く(**3%以内で**)再現

▶ 高エネルギーのニュートリノの割合の違い

(High energy µ →ビーム前方に飛ぶ→Low angle)

Reconstructed vertex

観測数(Nobs)の見積もり

検出器シミュレーション(ν_μ,anti-ν_μのみ)を用いたニュートリノ

観測数(Nobs)の見積もり

		MC(GCALOR)	MC(FLUKA2008)	Data					
	Nobs[/10 ¹⁴ POT]	I.78	1.41	1.51					
	DataとMC(FLUKA2008)で ~7% の違い								
	→ 3	系統誤差の考	慮が必要(進行	中)					
2 1.2	観測さ	観測されるニュートリノのエネルギー							
1 IC	1 スペクトルの比 = (FLUKA2008)/(GCALOR)								
A2008)/((· · · · · · · · · · · · · · · · · · ·	- - - 	ハドロン生	成モデルの違い					
0.0 0.4	MC ⁺⁺ ++++++	┟ ┥ ┥┽┽ _╋ ╵┥╵╡┿╸┿╹╵╸	→~2I%Œ)観測数の違い					
Ratio		MC stat. error)		\rightarrow					
0	1 2 3 4 5	6 7 8 9 1 Neutrino energy [GeV]	0 						

Summary

- INGRIDはニュートリノを直接観測することで、ビーム方向を 測定する唯一のニュートリノビームモニターである。
- 2010年からの物理ランにおいて、安定してデータ取得(99.9% data tacking efficiency)を行うことが出来た。
- 検出器シミュレーションによるニュートリノイベントの再現
 - Shape: 3~4%内で一致
 - Normalization → 7%の差.系統誤差はスタディ中.
 - ハドロン生成モデル(一次反応、二次反応)、陽子ビーム、ニュートリノ反応モデル.
- バックグラウンドの見積もりも平行して進める.

Back up

フラックスで平均した各水平モジュールでの検出効率

Module#	0	1	2	3	4	5	6
Efficiency [%]	48.3	50.7	52.3	52.2	52.1	50.8	48.0
Module#	7	8	9	10	11	12	13
Efficiency [%]	49.4	51.3	52.2	51.4	51.8	50.9	48.4

