T2K実験ニュートリノビームモニター INGRIDにおけるビーム測定結果I

京大理,東大理A,阪市大理B 村上明,大谷将士,松村知恵B,木河達也,鈴木研人,高橋将太, 南野彰宏,横山将志A,山本和弘B,市川温子,中家剛

Contents

- INGRID data taking
- Data Analysis method (event selection)
- Detector simulation
- Basic plot (Data vs MC)
- Uncertainty of expected # of neutrino observation
- Summary

Data taking

T2K実験:2010年1月より物理ラン開始

INGRID:2010年1月よりデータ取得開始

- 安定したデータ所得 → 99.9% data taking efficiency
- Total number of protons for analysis : 3.26×10^{19}

Data analysis method

Event selection

Monday, September 6, 2010

Fiducial volume cut

イベントのみを選択

Event selection

Detector Simulation

- INGRIDでのニュートリノ検出のシミュレーションの構成
 - ニュートリノ生成→INGRID: Jnubeam (GEANT3)
 - INGRIDとニュートリノの反応: NEUT
 - ニュートリノ反応で生成された粒子の運動:GEANT4
- モジュール内で起きたニュートリノ反応のみを扱う。
 - <u>壁でのニュートリノ反応は考慮していない(Study中)</u>

Energy → photon

ミューオンによるHITの光量を用いて調整

- 外からのミューオンのHITを選択
- Scintillator内のトラックの長さの違い、ファイバーによる減衰を補正した光量分布
 - ピークの光量を使用

- MCでIシンチレータ内でのミューオ ンによるエネルギー損失量を求める.
- データの光量に合うようにMCの energy → photonの変換を調整

Real scintillator shape

Photo: surface of scintillator bar •

white area: the reflective material.

実際のScintillator barの端は反射材の層が厚く、不感領域。

- Tracking inefficiencyに角度依存。
- MCのScintillatorの形を実際に感度 のある部分の形に似せた。

Basic plot

- イベントセレクション後の各種変数の分布
 - DataとMCの分布
- Data:2010年1月~6月の物理データ
- MC : ν_μのみ
 - aniti- V_{μ} : 5%. V_{e} : 1%. anti- V_{e} : 1%以下 (at Flux to INGRID)
 - 2種類のハドロン生成モデルを使用(GCALOR, FLUKA2008)
- イベント数で規格化
 - ShapeがDataとMCでどの程度合っているかを検証.

Basic plot of all modules

Basic plot of all modules

Efficiency to V_{μ}

(# of events after event selection) / (# of interaction in Fiducial volume).

Flux averaged efficiency for each module

Module#	0	1	2	3	4	5	6
Efficiency [%]	48.3	50.7	52.3	52.2	52.1	50.8	48.0
Module#	7	8	9	10	11	12	13
				10			

→ Averaged efficiencyの違いはエネルギースペクトルの違いに起因

Uncertainty of Nobs

ハドロン生成モデル(GCALOR, FLUKA2008)の違いによる、

INGRIDでのニュートリノ観測数(Nobs)の違い

Ratio of # of observations (FLUKA2008)/(GCALOR) ~79% (for v_{μ} + anti- v_{μ})

ハドロン生成の測定実験ではFLUKA2008がDataを良く再現

→FLUKA2008を使用

Uncertainty of Nobs 2

ニュートリノの各反応断面積の絶対値を変化させた際の、INGRID

でのニュートリノ観測数の違い (including νμ, anti-νμ, νe, anti-νe)

	Diff. from original	参考值:Diff.at SK		
	Nobs	(FCFV cut)		
CCQE + 10%	3.7%	2.6%		
CCIπ + 20%	5.7%	4.4%		
CC Other + 20%	5.7%			
NC + 30%	1.8%	7.5%		

- →スタディを継続(相対的な割合の変更)
- → 反応断面積から来る系統誤差の見積もり

Summary

- INGRIDはニュートリノを直接観測することで、そのビーム 方向を測定するT2K実験唯一のニュートリノビームモニター である。
- 2010年からの物理ランにおいて、INGRIDとして安定して データ取得を行うことが出来た。
- 検出器シミュレーションによる各変数の分布(Shape)は実 データと3~4%で良く再現出来ている。
- 期待ニュートリノ観測数の不定性をスタディ中
 - ハドロン生成モデル、ニュートリノ反応モデル.

Back up

Neutrino energy spectrum at each modules

