T2K実験ニュートリノビームモニター INGRIDにおけるビーム測定結果I

京大理,東大理^A,阪市大理^B <u>村上明</u>,大谷将士,松村知恵^B,木河達也,鈴木研人,高橋将太, 南野彰宏,横山将志^A,山本和弘^B,市川温子,中家剛

Contents

- INGRID data taking
- Data Analysis method (event selection)
- Detector simulation
- Basic plot (Data vs MC)
- Uncertainty of expected # of neutrino observation
- Summary

Data taking

T2K実験:2010年1月より物理ラン開始

INGRID:2010年I月よりデータ取得開始

- 安定したデータ所得 → 99.9% data taking efficiency
- Total number of protons for analysis : 3.26 × 10¹⁹

Data analysis method

ビームタイミングと同期した イベントのみを選択

Fiducial volume cut

Event selection

Detector Simulation

- INGRIDでのニュートリノ検出のシミュレーションの構成
 - ニュートリノ生成→INGRID: Jnubeam (GEANT3)
 - INGRIDとニュートリノの反応: NEUT
 - ニュートリノ反応で生成された粒子の運動:GEANT4
- モジュール内で起きたニュートリノ反応のみを扱う。
 - <u>壁でのニュートリノ反応は考慮していない(Study中)</u>

Energy → photon ミューオンによるHITの光量を用いて調整

Real scintillator shape

Photo : surface of scintillator bar •

white area : the reflective material.

- 実際のScintillator barの端は反射材 の層が厚く、不感領域。
- Tracking inefficiencyに角度依存。
- MCのScintillatorの形を実際に感度 のある部分の形に似せた。

Basic plot

- イベントセレクション後の各種変数の分布
 - DataとMCの分布
- Data: 2010年1月~6月の物理データ
- MC : ν_μのみ
 - aniti- v_{μ} : 5%. v_{e} : 1%. anti- v_{e} : 1%以下 (at Flux to INGRID)
 - 2種類のハドロン生成モデルを使用(GCALOR, FLUKA2008)
- イベント数で規格化
 - ShapeがDataとMCでどの程度合っているかを検証.

Monday, September 6, 2010

Basic plot of all modules

Efficiency to V_{μ}

→ Averaged efficiencyの違いはエネルギースペクトルの違いに起因

Uncertainty of Nobs

ハドロン生成モデル(GCALOR, FLUKA2008)の違いによる、

Ratio of # of observations (FLUKA2008)/(GCALOR) ~79% (for v_{μ} + anti- v_{μ})

ハドロン生成の測定実験ではFLUKA2008がDataを良く再現

→FLUKA2008を使用

Uncertainty of Nobs 2

ニュートリノの各反応断面積の絶対値を変化させた際の、INGRID

でのニュートリノ観測数の違い (including Vµ, anti-Vµ, Ve, anti-Ve)

	Diff. from original Nobs	参考值 : Diff. at SK
		(FCFV cut)
CCQE + 10%	3.7%	2.6%
CCIπ + 20%	5.7%	4.4%
CC Other + 20%	5.7%	
NC + 30%	I.8%	7.5%

→スタディを継続(相対的な割合の変更)

→ 反応断面積から来る系統誤差の見積もり

Summary

- INGRIDはニュートリノを直接観測することで、そのビーム 方向を測定するT2K実験唯一のニュートリノビームモニター である。
- 2010年からの物理ランにおいて、INGRIDとして安定して
 データ取得を行うことが出来た。
- 検出器シミュレーションによる各変数の分布(Shape)は実 データと3~4%で良く再現出来ている。
- 期待ニュートリノ観測数の不定性をスタディ中
 - ハドロン生成モデル、ニュートリノ反応モデル.

Back up

Neutrino energy spectrum at each modules

