T2K実験ニュートリノビームモニター INGRIDにおけるビーム測定結果I

京大理, 東大理^A, 阪市大理^B

<u>村上明</u>,大谷将士,松村知恵^B,木河達也,鈴木研人,高橋将太, 南野彰宏,横山将志^A,山本和弘^B,市川温子,中家剛 他T2Kコラボレーター

ニュートリノ振動解析の一例

シミュレーション(MC)が重要.

INGRIDでのニュ-	ートリノ観測				
INGRID : I4(I6)モジュールでニュ	ートリノ反応をカウント				
$N_{mod}^{DATA}, \ N_{mod}^{EXP} = \int \Phi_{mod}^{MQ}$	$G_{d}^{C} \times \sigma^{MC} \times \epsilon^{MC} dE$				
→ 高統計の観測を利用できないか.					
現時点でのMCの主な不定性					
項目	不定性				
ニュートリノフラックス $\Delta \Phi$	~25%				
反応断面積 $\Delta\sigma$	~30%				
$\Delta \epsilon^{MC}_{INGRID} \ll \Delta \Phi, \Delta \sigma \Rightarrow Reduce \ \Delta \Phi$	$\Phi, \Delta \sigma \ from \ N_{mod}^{DATA}/N_{mod}^{EXP}$				
$N_{SK}^{EXP} = \sum_{mod} \frac{\int \Phi_{SK}^{MC} \times Prob(\Delta m^2, \theta) \times \sigma_{Water}^{MC} \times \epsilon_{SK}^{MC} dE}{\int \Phi_{mod}^{MC} \times \sigma_{FE}^{MC} \times \epsilon_{INGRID}^{MC} dE} \times N_{mod}^{DATA}$					
まずは、現時点でのデータ	と MC の比較を行う.				

検出器シミュレーション

- T2K実験: P(30GeV) + C(Target) → Hadron(π ,K,...) → ν
- INGRIDでのニュートリノ観測のシミュレーションの構成
 - ニュートリノ生成→INGRID: Jnubeam (GEANT3)
 - INGRIDとニュートリノの反応:NEUT
 - ニュートリノ反応での生成粒子に対する応答:GEANT4
- モジュール内で起きたニュートリノ反応のみを扱う.

ニュートリノフラックス

- 30GeV付近のP+C衝突の実験データがない.
 - ハドロン生成モデルの不定性が大きい → ニュートリノフラックスの不定性.
 - 現在NA6I@CERNで測定中 → フラックスをチューニング
- 二つのハドロン生成モデル(GCALOR, FLUKA2008)を使用
 - FLUKA2008:現状では実験データ(NA61 preliminary)を良く再現.

T2K実験:2010年I月から物理ラン開始

- 99.9% data taking efficiency
- Total delivered protons for analysis: $\sim 3.3 \times 10^{19}$

次にデータの解析方法(イベントセレクション)について説明→

イベントセレクション

データ vs MC

- イベントセレクションで残ったニュートリノイベント に対する応答(# of active plane, tracking angle,...)の比較
- データ:2010年1月~6月の物理データ
- MC:νµのみ
 - anti- v_{μ} : 5%. v_{e} : 1%. anti- v_{e} : 1%以下 (at Flux to INGRID)
 - 2つのハドロン生成モデル(GCALOR, FLUKA2008)による
 ニュートリノフラックスを使用.
- イベント数で応答の分布を規格化
 - 分布の形が両者でどの程度合っているかを検証.

Friday, September 10, 2010

Tracking angle

GCALORでは最大~18%(at Low tracking angle)の差 FLUKA2008では良く(**3%以内で**)再現

▶ 高エネルギーのニュートリノの割合の違い

(High energy µ →ビーム前方に飛ぶ→Low angle)

Reconstructed vertex

検出効率 ε_{INGRID}

MC(FLUKA2008)を用いて検出効率を求めた.

(# of events after event selection) / (# of interaction in Fiducial volume)

観測数の見積もり・比較

ニュートリノ観測数のMC(v_{μ} +anti- v_{μ})とデータの比較

	MC(GCALOR)	MC(FLUKA2008)	Data
観測数[/10 ^{Ⅰ₄} POT]	1.78	1.41	1.52
Diff from Data	+17%	-7%	0

→ ハドロン生成モデルの違いによる観測数の違い:

FLUKA2008/GCALOR ~ 79%

ニュートリノイベントの各分布のShapeだけでなく、

観測数もFLUKA2008の方がデータと合っている.

(ただしニュートリノ反応断面積の不定性は考慮していない.

→ 両者の不定性を考慮した比較は今後行っていく.)

まとめ

- INGRIDは各モジュールでのニュートリノ観測数から、
 ビーム方向を測定するビームモニターである.
- 2010年からの物理ランにおいて、安定してデータ取得 (99.9% data tacking efficiency)を行うことが出来た.
- 二つのハドロン生成モデルを用いてシミュレーションと
 データの比較を行った.
 - ニュートリノイベントの各分布の形、観測数のどちらに おいてもFLUKA2008の方がデータを良く再現していた.
- 次はフラックスの不定性だけでなく、ニュートリノ反応断 面積の不定性も考慮した比較を行う.

Back up

シグナルとバックグラウンド

→ シグナルシミュレーションとデータを比較することで検証.

Energy → photon ミューオンによるHITの光量を用いて調整

Real scintillator shape

Photo : surface of scintillator bar •

white area : the reflective material.

- 実際のScintillator barの端は反射材 の層が厚く、不感領域。
- Tracking inefficiencyに角度依存。
- MCのScintillatorの形を実際に感度 のある部分の形に似せた。

フラックスで平均した各水平モジュールでの検出効率

Module#	0	1	2	3	4	5	6
Efficiency [%]	48.3	50.7	52.3	52.2	52.1	50.8	48.0
Module#	7	8	9	10	11	12	13
Efficiency [%]	49.4	51.3	52.2	51.4	51.8	50.9	48.4

