INGRID beam monitoring

Contents

- Problem : double-count of noise effect on Data and MC
- Problem : neutrino event loss due to pileup

Calculate variation of MC # of expectation between w/ noise and w/o

I. Measure some noise properties in no

noise each module

beam period

2.

 Get the correlation b/w variation of MC expectation vs. noise rate

Reproduce the noise properties by MC

Noise correction for MC

- 4. Calculate the correction factors for MC expectation from the result of fitting.
- 5. Calculate noise rate (currently every MR Run) and do correction

MPPC noise properties

- Noise
 - is hits on beam off cycles
 - is hits on cycles which have no time cluster events
- Measured noise property
 - Noise rate / cycle for each channel
 - Light yield (LY) and TDC distribution of each module
- Reproduce these noise property by MC

Comparison between data and simulation (Run33)

Variation of MC expectation from noise

 Appropriate neutrino event selection for MC w/ and w/o noise MC and calculate variation b/w two.

Correction factor

Calc. noise correction factor every day (ex. MR Run33)

Fluctuation is small → Estimate correction factor every MR Run

MC expectation w/o noise

- Again, generate INGRID Standard MC just w/o used noise MC
 - Currently, only for numu neutrino.
- Small difference of selection efficiency b/w w/ and w/o noise MC

Neutrino selection efficiency of $\nu\mu$ in FV (CC+NC)

Difference of MC expectation

Expected # of events in 14 standard modules (include only numu)

unit:[/10 ²¹ POT]	Nexp (w/ noise MC)	Nexp (w/o noise MC)	(w/o noise) / (w/ noise)
I0d-v2 (Run I proton beam.)	I.427E+07	I.467E+07	I.028
10d-v3.1 (Run I&II proton beam)	I.464E+07	I.506E+07	I.028
lla-v2	I.504E+07	I.546E+07	I.028

MC expectation (for numu) increase by 2.8%

Also check this effect on numu-bar by generating MC w/o noise MC.

Pileup problem

- At current INGRID tracking, select only one track at more than two tracks in same module in same bunch.
 - Track selection is depend on the most downstream plane# (MD#) and penetrated tracking planes (=track length)
 - Select the track with larger MD# and longer length

 At high power beam, possible to miss track of neutrino event → neutrino event lost (pileup problem) → Want to estimate the effect

Label for each	- NuFV = Remain after FV cut = neutrino event candidate
event case	- NuOV = Reject w/ FV cut
Υ.	- BG = Reject w/ Upstream VETO cut

Pileup-I: NuFV & NuFV

Track (NuFV) Pileup-2 : NuFV & NuOV Track (NuOV) Pileup-2A Pileup-2B X-Z V-Z X-Z V-Z FV FV FV FV X-Z y-z X-Z y-z Fracke Tracked BUKEO Select fracked FV -> Select FV FV Data : 0 events Data : levents No loss l event loss

MC : I events

MC : I events

Probability of Pileup event loss

Rate of event loss due to Pileup when I NuFV happen = Rate(pileup-I) + Rate(pileup-2B) + Rate(pileup-3B)

Conditional Probability of event loss

= Event loss rate / NuFV rate

= Rate(NuFV) + Rate(NuOV) x Prob(pileup-2B) + Rate(BG) x Prob(pileup-3B) [ppb]

→ Each event rates estimated from data. → Probability of whether 2A or 2B is selected in Pileup-2. (also for Pileup-3) estimated by toy MC with PDF from data.

Each event rate (Data)

- Use data in MR Run29-30 to estimate each event rates
- Low beam power (~2el2 ppb)

Toy MC

Make 1e6 toys \rightarrow Calc. prob. of which event selected.

Result of 10⁶ toy MC

Pileup 2 (NuFV & NuOV)	Probability
2A (No loss)	0.4758
2B (levent loss)	0.4605
Same MD# and Track length	0.0637

Pileup 3 (NuFV & BG)	Probability
3A (No loss)	0.4107
3B (levent loss)	0.5773
Same MD# and Track length	0.0120

- Probability of "same MD# and track length" added on Prob-A and Prob-B fifty-fifty at this time.

Event loss probability at each module

Event loss probability: 2~3% [/IEI3 pot]

History of protons/bunch

Average pileup probability at module#10 (assume pileup prob. increase linearly to ppb)

- MR Run29-30 : 0.85%
- MR Run38 : 3.6%

Effect on beam profile

Ex) check the horizontal beam profile width in MR Run38

 \rightarrow Width decrease by 1.4%

Summary

- Check pileup effect by using the low intensity beam data and toy MC
- Probability of event loss due to pileup = 3.3% [/lel3 pot] (module#10)
- In March 2011, beam power reach to145kW ~ 1.1e13 ppb
 - 3.6% event loss (assume linearity of pileup loss to ppb) → Not negligible.
- Plan to estimate the correction factor spill-by-spill for observed neutrino event by using this results
- For details, Kikawa-san estimate this pile-up effect bunch-by-bunch by using Detector MC