INGRID MC Work Flux I 0d tuning effect

A.Murakami

Motivation

- Check the effect of flux tuning (tuned-vl) on INGIRD observation.
 - numu and anti-numu MC sample.
- Comparison of I0d (no tune) to I0d tuned flux (histogram).
- Use tuning version 1,2
 - version I : from kubo-san
 - version 2 : from slavic-san
- Consider only MC Stat error

10d flux (no tune & tuning)

- The slavic's report of 10d flux (no tuned) is here : <u>http://www.t2k.org/beam/NuFlux/FluxRelease/10d/sumplot10d/view</u>.
 - Use FLUKA hadron production input and has the history of hadrons.
- I0d tuned-vI was reported slavic-san : <u>http://</u> <u>www.t2k.org/beam/NuFlux/FluxRelease/I0d/I0dtunevI/</u> <u>sumplots/view</u>
 - Tuning many parameters of pion, kaon production.
- I0d tuned-v2 was reported at plenary meeting at Dec collabo. meeting.
 - Only pion tuning.

$v\mu$ flux I 0d (no tune, tuned-v2)

Wednesday, December 22, 2010

The expect # of observation

- Calculate the expect # of observations.
 - INGRID MC : input flux 10d no tune (fluka-input)
 - Neutrino energy weighting with flux ratio.
 - Integrate the energy spectrum after neutrino selection in whole energy region.
 - The energy region of tuned-v2 flux : 0 ~ 10GeV.
 → Weighting factor at high energy (>10GeV) is assumed to be 1.
 - $V\mu$ and anti- $V\mu$ MC sample.

Wednesday, December 22, 2010

Nobs of all modules

	νμ [/10 ¹⁴ pot]	anti-Vµ [/10 ¹⁴ pot]	∨µ+anti-∨µ [/10 ¹⁴ pot]
l0d	I.296	0.02515	1.321
10d tune-v1	I.430	0.02635	1.456
10d tune-v2	I.427	0.02660	1.454
10d tune-v1 / 10d	1.103	I.048	1.102
10d tuned-v2 /10d	1.101	I.058	1.100

Tuned effect to Nobs of INGRID : +10% Tuned-v1, -v2 effect to Nobs is almost same.

Back up

of observed $\nu\mu$ [/10²¹POT]

module#	0	I	2	3	4	5	6
l 0d	6.587E+05	8.783E+05	1.051E+06	I.I25E+06	I.060E+06	8.876E+05	6.666E+05
10d tune v1	7.182E+05	9.668E+05	I.165E+06	I.252E+06	I.I77E+06	9.775E+05	7.270E+05
10d tune/10d	1.090	1.101	1.109	1.113	1.110	1.101	1.091

module#	7	8	9	10	11	12	13
l01	7.204E+05	9.304E+05	1.101E+06	I.I62E+06	I.089E+06	9.219E+05	7.076E+05
I0d tune vI	7.867E+05	I.025E+06	I.222E+06	I.294E+06	I.206E+06	1.015E+06	7.716E+05
10d tune / 10d	1.092	1.102	1.110	1.113	1.108	1.101	1.090

of observed $\nu\mu$ [/10²¹POT]

module#	0	Ι	2	3	4	5	6
l Od	6.587E+05	8.783E+05	1.051E+06	I.I25E+06	I.060E+06	8.876E+05	6.666E+05
10d tune v2	7.126E+05	9.500E+05	I.I72E+06	I.249E+06	I.I70E+06	9.766E+05	7.195E+05
10d tune/10d	I.082	I.082	1.116	1.111	1.104	1.100	I.079

module#	7	8	9	10	11	12	13
b01	7.204E+05	9.304E+05	1.101E+06	I.162E+06	I.089E+06	9.219E+05	7.076E+05
10d tune v2	7.797E+05	I.023E+06	I.230E+06	I.287E+06	1.212E+06	1.011E+06	7.760E+05
10d tune / 10d	I.082	1.099	1.117	1.108	1.114	I.097	I.097

of observed anti-Vµ [/10²¹POT]

module#	0	Ι	2	3	4	5	6
l 0d	I.363E+04	I.602E+04	I.995E+04	2.183E+04	2.000E+04	I.749E+04	I.504E+04
10d tune v1	I.447E+04	I.760E+04	2.055E+04	2.202E+04	2.057E+04	1.810E+04	I.441E+04
10d tune/10d	I.062	1.099	1.030	I.009	I.029	I.034	0.958

module#	7	8	9	10	11	12	13
b01	I.490E+04	I.756E+04	2.050E+04	2.243E+04	I.986E+04	I.798E+04	I.604E+04
I0d tune vI	I.633E+04	I.877E+04	2.150E+04	2.241E+04	2.114E+04	I.927E+04	I.640E+04
10d tune / 10d	I.096	I.069	I.049	0.999	I.064	I.072	I.023

of observed anti-Vµ [/10²¹POT]

module#	0	Ι	2	3	4	5	6
l 0d	I.363E+04	I.602E+04	I.995E+04	2.183E+04	2.000E+04	I.749E+04	I.504E+04
10d tune v2	I.435E+04	I.685E+04	2.101E+04	2.298E+04	2.101E+04	I.836E+04	I.583E+04
10d tune/10d	1.053	1.052	1.053	1.053	1.051	I.049	I.052

module#	7	8	9	10	11	12	13
b01	I.490E+04	I.756E+04	2.050E+04	2.243E+04	I.986E+04	I.798E+04	I.604E+04
10d tune v2	I.567E+04	I.850E+04	2.162E+04	2.356E+04	2.082E+04	I.880E+04	I.678E+04
10d tune / 10d	1.051	I.053	I.055	1.051	I.048	I.045	I.046