INGRID MC Work

A.Murakami

- Check the effect of flux tuning (tuned-vl) on INGIRD observation.
 - Comparison of IOc nominal, of IOd (no tune) to IOd tuned flux.

IOd flux (no tune & tuned-vl)

- The slavic's report of 10d flux (no tuned) is here : <u>http://www.t2k.org/beam/NuFlux/FluxRelease/10d/sumplot10d/view</u>.
 - Main component : I0d use FLUKA model and has the history of hadrons. → Hadron production mechanism is almost same as FLUKA10b flux.
- The slavic's report of 10d tuned flux is here : <u>http://www.t2k.org/beam/NuFlux/FluxRelease/10d/10dtunev1/sumplots/view</u>
 - Main tune : parameta of hadron production, etc...
- Check I0d flux at INGRID.

Vµ Flux at module 3

The ratio anti-V μ Flux at module 3

The histogram ratio

- The histogram ratio is put at scbn00:/export/scraid0/ data/akira/jnubeam/enuweight/10d_tune-v1/
 - "fRatio_10c_10d_mu_3" means "The Vµ ratio (10d no tune)/(10c nominal) at module 3.
 - "fRatio_I0d_I0dvI_mu_3" means "The Vµ ratio (I0d tune-vI)/(I0d no tune) at module 3.
- These histogram have fine binning (bin width is 50MeV)
 → Big MC stat. error at high energy region.
 - Change the bin size of the histogram yourself for lower stat. error.

The expect # of events observed at INGRID

- Calculate the expect event rate at the fiducial module of INGRID.
 - Flux × cross-section of Fe × efficiency to V interacted in the module.
 - Use Flux 10d and 10d tuned-v1.
 - Use $\nu\mu$ and anti- $\nu\mu$ MC sample.

Cross-section of v+Fe

Used efficiency of ingrid

The used efficiency in this study :

(# of events after cut)/(# of interacts in a whole module)

of observed $V\mu$ [/10²¹POT]

module#	0	I	2	3	4	5	6
l0d	6.59E+05	8.78E+05	I.05E+06	I.I2E+06	I.06E+06	8.88E+05	6.67E+05
10d tune-v1	7.18E+05	9.67E+05	I.I7E+06	I.25E+06	I.18E+06	9.78E+05	7.27E+05

module#	7	8	9	10	11	12	13
P01	7.20E+05	9.30E+05	I.10E+06	I.16E+06	I.09E+06	9.22E+05	7.08E+05
10d tune-v1	7.87E+05	I.03E+06	I.22E+06	I.29E+06	1.21E+06	1.01E+06	7.72E+05

Ratio of Vµ Nobs (10d tuned-v1 / 10d)

- Energy spectrum difference of each module

- Energy dependence of weight factor (no tune \rightarrow tuned-vI)

Nobs of all modules

	νμ [/10 ¹⁴ pot]	anti-Vµ [/10 ¹⁴ pot]	∨µ+anti-∨µ [/10 ¹⁴ pot]
l0d	1.30	0.0251	I.32
10d tune-v1	I.43	0.0264	I.46
(I0d tuned-vI) /I0d	1.10	I.05	1.11

Tuned-vI effect to Nobs of INGRID : + | | %

The event rate of beam data (run2010a) = 1.52 \rightarrow the ratio (10d tuned-v1) / data (run2010a) = 0.96

Beam profile

- Reconstruct beam profile with # of events after neutrino selection.
- Use vµ + anti-vµ MC samples and run2010a data.
 - Only stat error.
- Fit the profile with Gaussian.

MC Beam profile (after selection)

Beam width different between no-tune and tuned-vl. (Beam center is same in stat error)

width (MC)	σ horizontal [cm]	σ vertical [cm]	horizontal / vertical	
l 0d	439±1	459±1	0.96	
10d tune-v1	431±1	450±1	0.96	
(I0d tuned-vI)/(I0d)	0.98	0.98		

→ Tuned effect : -2% beam width
→ Beam width is not so much changed.

