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Abstract

Observation of the KL � ����e�e� mode and measurement of its branching
ratio are presented in this thesis� In this decay mode� CP violation is expected
to occur as an interference between two intermediate states with di�erent
CP properties� one is an internal bremsstrahlung associated with the CP
violating KL � ���� decay� and the other is a direct emission process
characterized by the CP conserving magnetic dipole transition� Thus it can
provide a new testing ground for investigating CP violation� Prior to the
experiment� only an upper limit was given to the branching ratio� Thus our
main purpose was to establish its existence experimentally and to measure
the branching ratio�

The experiment was performed with a neutral K� line at the �� GeV
proton synchrotron �KEK	� The detector consisted of a magnetic spectrom

eter and a pure
CsI electromagnetic calorimeter� The former measured the
momentum and track of a charged particle� and the latter determined the
energy and position of an electromagnetic component �e� and �	�

The data presented in this thesis were taken in ���� and ���
� and the
analysis followed subsequently� We observed �� KL � ����e�e� events
with an expected background of ��� events� We also obtained ����� KL �
��������� � e�e��	 events� they were used to determine the incident KL

�ux and various detector e�ciencies�
Based on the ���� events observed as the KL � ����e�e� mode� its

branching ratio is measured to be

Br�KL � ����e�e�	 � ����� ����stat�	� ����syst�		� ���� �

where the �rst error is statistical and the second is systematic� This re

sult agrees well with the theoretical prediction and the recent experimental
measurement based on ����� ��� observed events at FNAL�
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Chapter �

Introduction

Since the discovery of CP violation in the KL � �� mode ��� in ����� un

derstanding of its phenomena and origin has been a high priority both in
theoretical and experimental particle physics� Up to the present time� its ev

idence comes only from K� decay� i�e� CP violation is observed in the speci�c
K� decay modes in spite of numerous experimental e�orts� In the theoretical
�eld� many models have been published after its discovery� To name some�
a superweak model ��� has sought for its origin in a new �S � � interaction�
The model still remains consistent with all existing data�� In another model�
the Higgs sector was claimed to be a source of CP violation ��� ��� Although
the model has been excluded experimentally as its sole origin� it still presents
viable as well as interesting possibilities� It is now widely believed that CP
violation can be explained by the Kobayashi
Maskawa model �
�� According
to the model� a complex phase in the quark mixing matrix �CKM matrix	
induces the CP and�or T violation phenomena� We should stress that� al

though it is accepted as an essential part of the Standard Model� it has not
been proven experimentally� Therefore� it is indispensable to establish CP

violation in other system� for example� in the B� �B
�
system and other KL

decay channels�
The decay mode KL � ����e�e� may provide an interesting testing

ground for investigating CP violation�� as described in next section� The
purpose of this study is to observe a clear evidence of the decay mode KL �
����e�e� and to establish its branching ratio as a foundation of new testing
�eld for CP violation�

In this thesis� an experimental measurement of its branching ratio� con


�This model was most recently disclaimed by the existence of Direct CP violation which
was established via the observation of undoubted non�zero ���� in recent experiments ��� ���

�In August� 	


� KTeV group reported the observation of the CP violation in KL �

����e�e� decays ����

�



�

ducted with ��
GeV�c proton synchrotron at High Energy Accelerator Re

search Organization �KEK	� is presented� The data used in this thesis� which
were almost all data available to analysis� were taken in two distinctive time
periods� One is �Helium run and the other is �Vacuum run� which repre

sent the condition of the decay volume� respectively �see Section ���	� Specif

ically� data in the Helium run was taken during �ve weeks� spanning three
beam cycles� before summer in ����� while data in the Vacuum run was taken
during about ten weeks� spanning �ve beam cycles� from January to June in
���
�

This thesis is organized as follows� At �rst� the physics motivation and
the experimental status are introduced in this chapter� The experimental
apparatus is presented in Chapter �� Chapter � deals with events recon

struction� i�e� a procedure to obtain physics quantities from raw data� In
Chapter �� the analysis of the two physics modes� KL � ����e�e� and
KL � ��������� � e�e��	� is described in detail� The latter modes� de

noted as KL � ������

D� is used to determine the incident KL �ux and
various detector e�ciencies� Having established the signal� we present the
calculation of branching ratio and estimation of systematic errors� Finally�
Chapter � summarizes the present experiment� The detailed description of
Monte Carlo simulation is given in Appendix A�

��� Theoretical Interest

The decay KL � ����e�e� is expected to occur via ������ intermediate
state converting the virtual photon into an e�e� pair�

Prior to our signal mode KL � ����e�e�� the CP property of the decay
KL � ����� is considered� which is closely related to the signal mode� In
case of real �� it was measured experimentally that the amplitude contains
two components in view of the photon emission mechanism ���� One is an
internal bremsstrahlung �IB	 associated with the KL � ���� and the other
is a direct emission �DE	� which are seen in Figure ����a	 and �b	� substituting
�� for real �� The photon emission by electric and magnetic multipoles �EJ
and MJ� where J denotes the angular momentum	� has CP � ���	J�� and
CP � ���	J eigenstate� respectively� The internal bremsstrahlung amplitude
can be expressed by a form equivalent to the EJ term with odd J� Since
���� system is always a CP
even state� the �nal state ����� has both
CP � !� and �� states� corresponding to IB�E� and M� contributions
respectively� in the approximation of retaining only dipole terms in direct
emission� The interference between these two di�erent CP states� however�



�

(a) Internal Bremsstrahlung (b) Direct Emission (c) Charge Radius contribion

K K K KL L L S
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Figure ���� Contributions to ������ from �a	 internal bremsstrahlung� �b	
direct M� or E� emission and �c	 K� charge radius�

doesn�t appear if the photon polarization is not measured� Thus� in order
to study CP violation experimentally in this mode� we must measure the
photon polarization directly or indirectly�

On the other hand� in this respect� we have a good probe of the photon
polarization in the case of the ����e�e� mode� that is its internal conversion
process� The photon polarization can be measured indirectly by studying the
correlation of the e�e� plane relative to the ���� plane� and CP violating
interference is unveiled� Calculations of the decay KL � ����e�e� have
been carried out in several papers ����� Along their procedure� calculations
and results are reviewed below�

The matrix element of the decay KL � ����e�e� is represented as

M�KL � ����e�e�	 �MIB !MM�
DE !ME�

DE !MCR � ����	

where the term MIB denotes the internal bremsstrahlung amplitude� and
ME�

DE and MM�
DE are direct emission amplitudes for electric
 and magnetic


dipole radiation� respectively� An additional term MCR is the contribution
of the K� charge radius� illustrated in Fig�����c	� which can contribute when
the photon is virtual�

Here we use the notation� KL�P	 � ���p�	�
��p�	e��k�	e��k�	� then

the matrix element can be written as

M�KL � ����e�e�	

� ejfsj
�
gIB

�
p��
p� � k �

p��
p� � k

�

!
gE�

m�
K

��P � k	p�� � �p� � k	P��



�

!
gM�

m�
K

�����k
�p��p

�
�

!
gCR
m�

K

h
k�P� � �P � k	k�

i �

k� � �P � k

�
e

k�
"u�k�	�

�v�k�	 � ����	

where k � k� ! k�� The parameters in the above expression are de�ned as
follows�

�a	 fs is the coupling constant for KS � ���� de�ned by

#�KS � ����	 �
jfsj�

���mK

�
�� �m�

�

m�
K

����
� ����	

�b	 The parameter gIB de�nes the internal bremsstrahlung� It is given by
gIB � ��� �fs	jfsj � where ��� is the CP violating parameter� A�KL �
����		A�KS � ����	� The phase of gIB is $�� ! 
�� where $��
is the phase of ��� and 
� is the I � � �� s
wave phase shift atp
s� � mK �
��m

�
K		� Here s� is the square of the �� invariant mass�

i�e� s� � �p� ! p�	�� gIB is rewritten as

gIB � ���e
i	��m�

K
� � ����	

�c	 The parameter gM� de�nes the direct M� radiation� The absolute value
of gM� is measured by the decay rate of the M� radiation in the KL �
������ and one obtained jgM�j � ��
�� The phase of gM� is that of
p
wave I � � �� scattering at

p
s� �
��s�		 and also factor of i as a

consequence of CPT invariance� gM� is rewritten as

gM� � i���
�	ei	��s�� � ����	

�d	 The parameter gE� was estimated to be small in Ref������ compared
with gM� and�or gIB� Also the parameter gCR resulted in small contri

bution� So detail explanation of them is skipped here�

From the matrix element in Eq�����	� di�erential decay rate is calculated in
three variables�

�i	 x � �p� ! p�	�	m�
K �normalized invariant mass of pions	�

�ii	 y � �k� ! k�	�	m�
K �normalized invariant mass of electrons	� and

�iii	 � �the angle between normals to the e�e� and ���� planes	�
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Figure ���� Schematic drawing for the de�nition of the angle �� which is the
angle between planes normal to the e�e� and ���� planes�

The last variable �� illustrated in Fig����� is determined as follows� Let
��p� ! �p�	 be parallel to the positive z direction in the KL rest frame� Then
the unit vector pointing to the !z direction is represented as

�nz � ��p� ! �p�		j��p� ! �p�	j � ����	

The unit vectors normal to the ���� plane

�n� � ��p� � �p�		j��p� � �p�	j ���
	

and to the e�e� plane

�nl � ��k� � �k�		j��k� � �k�	j ����	

then lie in the x
y plane and have components

�n� � �cos��� sin��� �	 �

�nl � �cos�l� sin�l� �	 �

where �� and �l lie between � to ��� The angle � is de�ned as

� � ��� � �l	mod���	

and ranges from � to ��� Note that the relation between the angle � and the
unit vectors can be written as

cos� � �nl � �n� � ����	

sin� � ��nl � �n�	 � �nz� �����	
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The result for the decay rate� normalized by that of KS � ����� is

#�KL � ����e�e�	
#�KS � ����	

�
��

����������� ��� ��	

Z �������

���
dy

�����y� ��� ��	

y�Z ���py��

���
dx������� x� y	

Z ��

�

d�

��
F �x� y� �	 � �����	

where the notation

�� �
m�

�

m�
K

� �� �
m�

e

m�
K

is introduced and F �x� y� �	 is given by� neglecting the electron mass and
terms concerned with small gE��

F �x� y� �	

�
�

�
jgIBj�

� ��������x� ��� ��	x��

x��x ! y � �	� � ���� x� y	��x� ��� ��	

!
��x� ���	

�x! y � �	������� x� y	
ln�L	�

�

�
�� ! � sin� �	�

�

!
�

�
jgIBj�

�
��x�y�����x� ��� ��	x��

���� x� y	�x��x! y � �	� � ���� x� y	��x� ��� ��	�

� �x�y

�x ! y � �	�	����� x� y	
ln�L	�

�

�
��� � sin� �	�

�

!
�

�
Re�gM�g

�
IB	

�� x� y

������� x� y	�
���

���� x� y	� ! y��x� ��� ��	

�x! y � �	������� x� y	
ln�L	 ! �����x� ��� ��	

�
�sin� cos��

!
�

��
jgM�j� �

x�
���� x� y	�	���x� ��� ��	�

�

�
�� ! � cos� �	�

!
�

�

jgCRj�
�x� �	�

y

x
���� x� y	�����x� ��� ��	 � �����	

The dependence of each term on the angle � is indicated in square brackets�
Here� the abbreviations

L �
�x ! y � �	x! ������� x� y	�����x� ��� ��	

�x! y � �	x� ������� x� y	�����x� ��� ��	
�

��x� y� z	 � x� ! y� ! z� � ��xy ! yz ! zx	






are used� Their resultant total branching ratio is

B�KL � ����e�e�	 � ����� ����	IB ! ����� ����	M�

! ������ ����	CR

� �� ���� � �����	

In the formula of the decay rate� � dependence of each term character

izes its property under CP transformation� From the expressions in Equa

tions ���
	������	� it can be obtained that cos� doesn�t changes its sign and

sin� changes sign under the sequence of transformation C ��p� � �p�� �k� �
�k�	 and P ��p� � ��p�� �k� � ��k�	� As can be seen in Eq������	� the interfer

ence term �gM�g

�
IB	 has the � dependence of sin� cos�� and then it changes

sign under CP transformation and so is the CP violating one� We can see
the e�ect through the asymmetry such as

A �

Z ���

�

�
d#

d�

�
d��

Z �

���

�
d#

d�

�
d�

Z ���

�

�
d#

d�

�
d�!

Z �

���

�
d#

d�

�
d�

�

This asymmetry� integrated over x and y� is calculated to be jAj � ��% sin&�	where

& � arg�gM�g
�
IB	 � $�� ! 
� � "
� �

and "
� denotes an average phase in the �� p
wave I � � channel� Inserting
$�� � ���� 
� � ���� and "
� � ��� �assuming an average �� mass of ap

proximately ��� GeV	� jAj is estimated to be about ��%� This e�ect arises
from the admixture of CP
even component in the KL wave function� In this
sense� it is an example of indirect CP violation�

In another paper ����� e�ects of direct CP violation are estimated but
are found to be small� In summary� the decay KL � ����e�e� is quite
interesting for studying CP violation e�ect� The observable parameter is
relatively large and well calculated� Although our sensitivity for the mode�
described in Section ��� does not reach to the level to see CP asymmetry
e�ect� it is important to study for the decay mode KL � ����e�e� and to
build up a foundation of new testing �eld for CP violation�

��� Experimental Status

The experimental status of the KL � ����e�e� and its related decay modes
are summarized in this section�

�Although cos� instead of sin� was used here in Ref��	
�� it was corrected in the
Erratum �	
��
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In the decay K � ������ the branching ratio was measured separately
for a direct emission component �DE	 and for a internal bremsstrahlung com

ponent �IB	 ���� In this experiment� both KL and KS decays were collected
simultaneously� The branching ratio of KS � ����� was measured�

B�KS � ������E�
� � ��MeV	

B�KS � ����	
� ������ ����� ����	� ���	 �

where E�
� is the energy of photon in the kaon rest frame� Since this mode is

dominated by the internal bremsstrahlung process� the energy spectrum of
photons from IB contribution could be obtained�

In the measurement of KL decay� relative strength of two amplitudes was
determined by analyzing the energy spectrum of �� The energy spectrum
was �tted to a linear combination of the KS spectrum� which was assumed
to be same as the KL IB contribution� and a Monte Carlo prediction for the
photon energy spectrum resulting from the direct emission �DE	 KL decay�
The resultant branching ratios of IB and DE contribution were reported to
be

Br�KL � ������ IB�E�
� � ��MeV	

Br�KL � ����	
� ������ ����	� ���	 �

and

Br�KL � ������DE�E�
� � ��MeV	

Br�KL � ����	
� ������ ���	� ���	 �

respectively�
In the signal mode KL � ����e�e�� our group �KEK
E���	 reported

the result of the experimental search for this decay mode� which was based
upon the data of Helium run and established the upper limit of

Br�KL � ����e�e�	 � ���� ���� ���% CL	

on its branching ratio ���� ���� and a preliminary result of the present exper

iment was presented in Ref������

On the other hand� recently a group at the Fermilab �KTeV	 reported
the measurement of its branching ratio

Br�KL � ����e�e�	 � ����� ���� ���	� �����

which was based on a sample �� candidate events with an expected back

ground level of ��� events �����



Chapter �

Experimental Apparatus

An experiment for KL � ����e�e� was performed using KEK ��
GeV�c
Proton Synchrotron �KEK
PS	� This experiment�KEK
E���	 originally aimed
to search for KL � ��e�e� and other rare decay modes with electromagnetic
products �e�� e�� �	� To achieve high sensitivities for these decay modes� large
amount of data had to be taken and thus the experiment had to be performed
at very high counting rate� This required a well
de�ned beam line� a detector
system which could be operated in an extremely high rate environment� and
good background rejection in an early stage of data taking�

In this chapter� descriptions of the instruments in the E��� experiment
are presented�

��� Beam Line

The KL beam was produced by a proton beam striking a target� KEK

PS delivered a �� GeV�c primary proton beam to the target with a typical
intensity of ������ during �
second spill per �
second cycle� Figure ��� shows
the side view of the neutral beam line� called K� line which was located in
the East Counter Hall of KEK
PS�� Before the target the primary protons
were bent upward �!��	 by a steering magnet �BS�	 and then downward
�
��	 by BS� to strike the target at an angle of ��� The production angle was
determined taking account of the KL yield and the ratio of produced KL to
neutrons� The target was ��
mm
long copper cylinder with ��
mm
diameter�
Secondary neutral beam had the divergence of �� mrad horizontally and

�In our experiment� a position was represented in the right�hand coordinate system�
where X� and Y�axis almost corresponded to the horizontal and vertical direction� respec�
tively� and Z�axis was almost the neutral beam direction� Its origin was set at the center
of the target�

�
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��� mrad vertically� de�ned by a series of collimators embedded in sweeping
magnets� The rectangular beam with fairly large aspect ratio ����	 was a
compromise between large aperture �i�e� many kaons	 and narrow width �i�e�
small beam hole in detectors	�

A �
m
long magnet immediate downstream of the target �D�	 bent down
the primary beam to the beam dump and swept out charged particles pro

duced at the target� Near the end of D� magnet� at ��� m downstream of the
target where the primary beam was separated from the neutral beam path� a
��
mm
thick lead block ��
plug	 was placed in the neutral beam� to remove
photons produced at the target� Photons were converted into e�e� pairs and
then were swept out by the magnetic �eld� The main collimator� as well
as the primary beam dump� was embedded in the second sweeping magnet
�D�	� It was ���
m
long in the beam direction and made of the heavy metal
�about �� % tungsten� density of �
��� g�cm		� The third �
m
long sweeping
magnet �D�	 was placed at Z����m which also had a brass collimator in it�
These sweeping magnets were operated at about � Tesla�� The beam duct
in D� magnet pneumatically connected with the a decay volume� described
below�

��� Decay Volume

Following the series of collimators and magnets� a �
m
long decay volume
started from Z����m� The detector system was designed to measure KL

decays in the decay volume�
The neutral beam after D� magnet still included not only neutral kaons

but also neutrons and photons� They created background events by the inter

action with materials in the beam region� Management of these background
events at the trigger level as well as the o'ine analysis was one of the hur

dles to overcome in the course of the experiment� Thus� it was preferable
to reduce material density in the decay volume in order to keep unwanted
interactions as small as possible�

Before it became ready to be evacuated� the decay volume was �lled
with helium gas at atmospheric pressure� To prevent detectors from being
damaged by penetrating helium gas� its downstream window should have low
gas permeability� and should be thin at the same time� We used a laminated
�lm of Mylar ��� �m� �	 and aluminum foils �� �m� �	 for the window in
this time� It had been found in previous analysis ���� ��� that backgrounds
from beam interactions with helium atoms were not negligible to achieve

�D� magnet could not be operated due to trouble during the experiment� The in�uence
on the counting rate was examined and found to be small�
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further sensitivity for KL � ����e�e�� Since early ���
� it was evacuated
down to � � ���	 Torr by a oil rotary pump� The window in this time was
a ��� �m
thick Mylar �lm reinforced with a cloth of Technora ����� g	cm�	�
high tenacity aramid �ber �Teijin Ltd�	� The degree of vacuum was monitored
by a pirani gauge throughout the beam cycles� Hereafter� we call the two
periods of beam time as �Helium and �Vacuum run� respectively�

��� E��� Detector

The E��� detector region started at ���� m downstream of the target� Fig

ure ��� shows the schematic view of the E��� detector system� The E���
detector system was originally designed to be optimum for the decay KL �
��e�e�� whose �nal state consists of two electrons and two photons� The
detectors were designed as follows� The system should measure energies and
momenta of all components to reconstruct events� We selected the con�g

uration of a spectrometer to determine momenta of charged particles� and
a calorimeter placed at the most downstream position of detectors to mea

sure energies and positions of electrons and photons� Several sets of trigger
scintillators and gas �Cerenkov counter were added to notify passages of fast
charged particles and to identify electrons mainly during data acquisition� In
the arrangement of components above� the design concept was to maximize
acceptances for KL decays� the detectors should have as large active areas as
possible and should be put upstream within practical range� Thus� for exam

ple� the radiator part of gas �Cerenkov counter was located inside an analyzing
magnet gap� and there was only minimum vacant space between detectors�
Another design philosophy was to achieve good performance in high count

ing rate environments� keeping high e�ciencies and good resolutions� This
required detectors to have narrow signal width� good time resolving power�
and constant gain in any operating conditions� It was one of the most im

portant points to determine structures of detectors and readout systems� In
following subsections� each component of detectors is described in detail�

����� Spectrometer

The E��� spectrometer� whose function was to measure a trajectory� a sign
of charge and momentum of charged particles� consisted of two sets of up

stream drift chambers� an analyzing magnet� and two sets of downstream
drift chambers�
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Figure ���� Schematic view of E��� detector system�
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Analyzing magnet

The analyzing magnet was a dipole magnet located between upstream and
downstream drift chambers� The pole piece was ��
� m long in the beam
direction� and its aperture was ��� m wide and ��� m high� The magnet pro

vided a vertical �eld of ��� Tesla at the center� Its average �eld integral was
����� Tesla�m� corresponding to horizontal momentum kick of ��� MeV�c�
The �eld strength was monitored by a NMR probe throughout the experi

ment�

Drift Chamber

The structure of the drift chambers is shown in Figure ���� Each drift cham

ber set consisted of six readout planes� X
X�� U
U�� V
V�� in which wires
were strung vertically and obliquely by � ���� respectively� Note that two
planes� for example� X
 and X�
plane was staggered by a half
cell as shown
in Fig�����b	 to resolve the left
right ambiguity of drift length� They had
active area of ��� m wide by ��� m high� covering the neutral beam region�
The chamber gas consisted of ��% Argon and ��% Ethane�	 The window
used was ��
�m
thick Mylar aluminized on both surface� Each detecting cell
consisted of a sense wire ��� �m diameter gold
plated tungsten with tension
of �� gf	 surrounded by �eld wires ���� �m diameter gold
plated copper

beryllium alloy with tension of ��� gf	� The half
cell size was � mm� which
was a compromise between rate capability of chambers and total number of
readout wires� Pitches of sense wires in a plane were measured by an optical
sensor in construction process and their deviations from nominal values were
kept within �� �m� All chambers were operated with a voltage of ����� V�

The signals from sense wire were ampli�ed and discriminated immedi

ately at the chamber� The ampli�er� shown in Figure ���� was composed
of three stage of common base ampli�ers� pole
zero circuits to cancel out
��t tail of a chamber signal� baseline restorers� and a pulse height limiter
which prevented dead time by large �wide	 pulses� For the upstream cham

bers and downstream X
view chambers� the output from the discriminator
was then transported to the counting hut and received by a bu�er module
which supplied power and threshold voltage to the ampli�ers and discrimina

tors� To reduce in�uence by accidental hits� � GHz pipelined time
to
digital
converter �PLTDC	 ���� was used to record hit time information� For the
downstream U�V
view chambers� the output from the discriminator was di


�Although we had planned to use a gas mixture containing CF� which has fast drift
velocity of electron �	�� 	��� for the rate capability� we employed a standard gas mixture
of Ar��
�� C�H���
� for the simplicity of the calibration�
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DC4 (same as DC2)

DC3 (same as DC1)

DC2 (U’-U / V-V’ / X-X’)
DC1 (X-X’ / U’-U / V-V’)
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beam direction (z)

(a) The arrangement of Drift Chambers

(b) The Cell structure of Drift Chamber
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sense wire

Au-plated tungsten

 D=30 µm
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Cu-Be D=100 µm

Figure ���� The structure of drift chamber� �a	 schematic view of the ar

rangement and �b	 the cell structure�
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Figure ���� The pre
ampli�er for drift chambers� It was composed of three
stage of common base ampli�ers �around Q��Q��Q�	� three pole
zero circuits
�two for ��t tail of a chamber signal and one for the pole of �rst stage
ampli�er	� baseline restorers� and a pulse height limiter equipped at the
second common base ampli�er�
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Figure ���� Examples of the drift chamber performance� �a	 E�ciencies in
DC�X� as a function of wire number� where the number � means a central
wire� �b	 position resolution of DC�X�� de�ned as the deviation of the hit
position of the wire to be examined from the expected position obtained with
the other chamber information� Fitting to the Gaussian form� the resolution
is found to be � ��� �m �after the correction of the track interpolation er

ror	� The o�set of the distribution indicates the shift in the position of this
layer� This o�set was used and corrected in the chamber alignments �see
Section ���	�

rectly received by a compound module of time
to
analog and analog
to
digital
converter �TAC	�

E�ciencies and position resolutions under typical beam conditions were
examined by using straight tracks which were taken in the special run with
the analyzing magnet o�� Tracks were reconstructed without hit information
of the object plane to be examined� Figure ����a	 and �b	 shows examples
�as to DC�X�	 of the e�ciency and position resolution measurements of the
drift chamber� A detection e�ciency of each wire was evaluated by checking
whether or not corresponding wire had an on
time hit� and was found to
be more than ��% in all region� The position resolution was de�ned as the
deviation of the hit position of the wire to be examined from the expected
position by track �tting using other chambers� and the typical resolution was
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found to be about ��� �m��

����� Electromagnetic Calorimeter

Two banks of calorimeters were placed at both sides of neutral beam line
�apart ��� mm	� each consisted of ���H	 � ���V	 undoped Cesium Iodide
�CsI	 crystal blocks� Their main function was to measure energies of electrons
and photons� and the position of the photons and charged particles� Each
CsI block was 
� mm � 
� mm in cross section and ��� mm in length �about
�� radiation length	� And a photomultiplier �PMT	 was attached to the
downstream end of each block to read a scintillation light output� The active
area of each bank was ���� m wide by ���� m high� The calorimeter was
placed in an air
conditioned housing box� where the temperature was kept
constant ����C	 within �����C and the humidity was less than ��%�

Features of undoped Cesium Iodide scintillator are summarized below�

�i	 High Z materials �Z����Cs	� ���I		 and thus short radiation length
�X� � ���� cm	

�ii	 Two components �fast and slow	 of scintillation light ����
The fast component is characterized by short decay time constants
�� � �� and �� ns	 and relatively narrow emission spectrum at ��� nm�
The slow component is emitted over a several �sec with wide spectrum
above ��� nm�

�iii	 Relatively large light output
The light yield of the fast component is about �% of standard NaI�Tl	
scintillator� while that of the slow component di�ers from one crystal to
another� which depend on impurities in crystals among other factors�

�iv	 Temperature dependence of light yield
The temperature coe�cients for both fast and slow components are
similar� They were measured to be ����%��C�

�v	 Slightly hygroscopic
Although care should be taken not to expose crystals to humid atmo

sphere� it is unnecessary to seal them hermetically �like NaI	�

�We also measured the position resolution from the distribution of �sum of distance��
which was the sum of two drift length of staggered two wires� for example� in DC	X and
DC	X�� The resolution was found to be less than 	�
 �m� The resolution� ��
 �m in the
text contained the e�ect of multiple scatterings in charged tracks� and was adopted as a
representative value in track �tting�
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Among the lists� the characteristic of fast scintillation response is especially
suited for our purpose� to achieve high rate capability� Each block was
wrapped with thin Te�on sheet and aluminized Mylar to improve light col

lection e�ciency�

We employed a ��� head
on type photomultiplier �Hamamatsu R��
�
��	
to detect a scintillation light� It had a UV
glass window to transmit a fast
component light from a CsI crystal� and had a �
stage linear focus dynodes
structure� Voltages between dynodes were supplied by a transistorized base
�Hamamatsu E��
�	� designed by us with Hamamatsu Photonics Co�� which
stabilized voltage distribution even under a high counting rate environment�
By using them� a photomultiplier gain was kept constant �within �% de

crease	 up to an anode current of ��� �A� which was equivalent to the case
when a � GeV electron struck a block at the rate of � MHz� A pulse linearity
was also measured on the bench and found to be within �% during the cur

rent range from ��
 to ��� GeV in the equivalent electron energy� To avoid
heat localization� each PMT base was temperature
controlled by air blow�

Several optical elements were equipped� as shown in Figure ���� between a
CsI crystal and a photomultiplier window� A �� mm
thick quartz light guide
was glued onto a photomultiplier window by the epoxy resin �Epotec
���	�
whose transmittance at the wavelength of ��� nm was above ��%� Next�
a bandpass optical �lter �KENKO U
���	 was glued to pass selectively the
fast component� It cut o� most of the slow component which could cause
a baseline shift by pile
up e�ects� A silicone �cookie was put between a
crystal and an optical �lter to make a photomultiplier detachable from a CsI
block�

Each block had two quartz �ber inputs on its downstream end� Through
one of them� a light from a Xe �ash lamp was injected into a crystal to
monitor the light transmittance of a crystal and�or the gain variation of a
photomultiplier� The other was reserved for the light from a YAG laser�
which� however� was not implemented in the experiment�

An analog signal from each PMT was transported into a bu�er module in
the electronics hut� It divided the signal into several ways� to an analog
to

digital converter �ADC ����	� to sum
ampli�ers� to a time
to
digital converter
�TDC ����	 via a discriminator� and to a processor used in the level � trig

ger� The sum
ampli�er module produced an analog signal proportional to
the energy deposit� summed over �����	 CsI blocks in each column�row	 in
the stack� It had a baseline restorer to prevent an output signal from the
baseline shift due to the pile
up� This output� called column�row	
sum� was
discriminated and then used in the level � trigger�

The energy and position resolutions were found to be about �% and 
mm
for one GeV electrons� the experimental procedure to determine these values
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pure CsI crystal
( 70mm x 70mm x 300mm )

PMT (R4275-02)
+ TR base (E4270)

(Quartz 20mmt)
Light guide

15(X) × 18(Y)

UV filter (U-330)

Silicone cookie (3mmt)

BasePMT

through quartz fiber
Xe-flash light

Al flange

(b) A module of the CsI calorimeter

(a) Schematic view of the pure CsI array

300 mm gap

Figure ���� Schematic drawing of the calorimeter�
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110 mm

Figure ��
� The side view of GC sliced at X��� The arrangement of mirrors�
light funnels and PMTs are shown in the �gure�

will be described in next chapter�

����� Gas �Cerenkov Counter

A ���m
long threshold gas �Cerenkov counter �GC	 was used to identify elec

trons� It was placed inside the gap of the analyzing magnet and �lled with
pure nitrogen at atmospheric pressure� It had 
 �horizontal	� � �vertical	 op

tical cells� each consisted of a re�ecting mirror� a light collecting funnel and
a photomultiplier� Figure ��
 shows the side view of GC sliced at X���

Since the emission spectrum of �Cerenkov light obeys �	�� distribution�
where � indicates its wavelength� we made e�orts to detect ultra
violet lights
�down to ��� nm	� to achieve good e�ciency for electrons�

A re�ecting mirror was made of � mm
thick acrylic substrate� coated with
aluminum �Al	 and magnesium �uoride �MgF�	 by vacuum evaporation� It
had a parabolic shape to focus �Cerenkov lights onto the PMT cathode� It was
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produced as follows� An acrylic sheet was heat
formed in an oven by pressing
a substrate to a convex model made of wood� Then it was trimmed by a laser
cutting machine into an appropriate size ���� mm���� mm	� Supporting ribs
were glued onto its backside� After that� its front surface was coated with
����(A Al and ���(AMgF� in a vacuum chamber ��������
 Torr	� Re�ectivity
of the mirror was monitored by a small sample which was coated together�
and was found to be ��% or greater in the wavelength region between ��� nm
to ��� nm and more than ��% above ��� nm�

A light funnel was the Winston type light collector ����� equipped in
front of a photomultiplier to increase the e�ective detecting area� It was
press
formed from a ��� mm
thick aluminum plate� Its inside surface was
coated with Al and MgF�� same as above�

A ��� photomultiplier �Hamamatsu R����	 was used to detect �Cerenkov
light� It has a quartz window to detect ultra
violet lights down to the wave

length of ��� nm� A gain of each photomultiplier was monitored throughout
the experiment� Actually� it was carried out by observing a pulse height
corresponding to single photo
electron emission� provoked by a green LED
light�

To study performance of the counter� we used the KL � �e� �Ke		 data
which was taken by a special trigger� hit information from the gas �Cerenkov
counter was not used in any form in the trigger� E�ciency for e�	e� and
pion rejection factor are shown in Figure ��� as a function of the threshold
for light output� in units of number of photoelectrons �p�e�	 For the actual
trigger� we set the threshold level at about ��� p�e�� where the pion rejection
of ���� was achieved with the electron e�ciency of ���
%�

����� Trigger Scintillation Counters

Trigger scintillation counters were the main components to provide trigger�
There were four sets of trigger scintillation counters �see Figure ���	� labeled
TC�X� TC�X� TC�X��Y and TC�X� where X �Y	 represented a horizon

tally �vertically	
segmented hodoscope� One set �TC�X	 was located just
downstream of the decay volume� The other sets were located downstream
of the analyzing magnet�

The crucial function of TC�X was to enhance the existence of charged
particles coming from the decay volume� and to reduced background events
which were originated from photon conversions in the detector materials�
both at the trigger stage and in the o'ine analysis� TC�X consisted of two
layers of plastic scintillation counters� labeled TC�F and TC�R� which were
placed �� mm apart in the beam direction� These counter were located up

stream of the analyzing magnet� Therefore they had an active area also in
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Figure ���� Electron e�ciency and pion rejection factor of GC as a function
of the threshold light output� The threshold is represented in photoelectron
number of GC signal�

the neutral beam region to avoid the loss of acceptance� The dimensions of
the individual counter segments were ��� mm in height and ��� mm in thick

ness� As for the width� there were two kinds� �� mm and �� mm� The narrow
counters were placed inside�near the beam region to reduce counting rate of
each counter� Each scintillator was wrapped with �� �m
thick aluminized
Mylar to avoid a crosstalk of scintillation lights� The arrangement of the
scintillators is schematically shown in Figure ���� The scintillation light out

put of each component was read by two �
����� photomultipliers �Hamamatsu
R����	 which were attached to top and bottom ends of a scintillator� The
photomultiplier equipped with a transistorized base ���� and operated with a
subdued gain �� �����	 to keep good gain stability in high counting rate en

vironments� In addition� we used an AC
coupled preampli�er �with � �� db
gain	 to supplement the photomultiplier gain� and a base
line restorer to
compensate base
line shifts at high counting rate� The typical counting rate
of a photomultiplier in the beam region was about � MHz� while the gain
stability of a photomultiplier tube with its base was checked up to � MHz
on a bench test ����� Figure ���� schematically shows the output signal �ow
of TC�� The output signal from the photomultiplier was processed by a dis

criminator via the preampli�er and base
line restorer� Then� coincidence was
required between one channel in TC�F and one of the two adjacent chan

nels in TC�R right behind it to enhance a charged particle going through�
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Figure ���� Schematic view of the TC�X hodoscope� The counter consisted
of two hodoscope planes� TC�F and TC�R� and was active even in the beam
region�
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Figure ����� The detection e�ciencies of TC�X for charged track as a func

tion of the extrapolated track position at TC�X plane�

Finally� a mean
timer module was used to produce a coincidence signal be

tween the top and bottom ends of the scintillator to reduce the timing jitter
due to the variation of hit positions� The e�ciency for charged tracks was
measured in the typical beam intensity� by checking mean
timer output cor

responding to extrapolated position of a track which was reconstructed by
the drift chambers� Figure ���� shows the e�ciencies as a function of the
extrapolated track position at TC�X plane� It was found that the over
all
e�ciency of TC� was ��% for a track� and that the ine�ciency was mainly
due to geometrical reason� gaps between adjacent scintillators�

The other sets of trigger scintillation counters were located downstream
of the analyzing magnet� Their dimensions were schematically shown in
Fig����������� Each plane had a ���
mm
wide gap at the center for the neu

tral beam to pass through� TC�X and TC�X�Y were located in front of
and behind drift chamber sets� respectively� TC�X��X	 consisted of �����	
counters in each arm� with the thickness of ������	 mm and the width of
�����	 mm for most inside two counters and ���
�	 mm for others� TC�Y�
segmented vertically� had �� counters in each arm with the thickness of
�� mm and the width of 
� mm� TC�X was placed immediate upstream
of CsI calorimeter in its housing box� It was composed of �� counters in
each arm� with the thickness of �� mm and the width of 
� mm� Each
counter was read by a ��� photomultiplier �Hamamatsu R���
��	 equipped
with a transistorized base �E����	 similar to the one used for the calorime
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Figure ����� The trigger counter plane TC�X�

ter� Counters in horizontally
segmented hodoscopes were viewed from both
top and bottom ends of scintillators� and those in vertically
segmented one
�TC�Y	 were viewed from one side� opposite to the beam region� Signals
were discriminated in the counting room and were used to make up trigger
information�

��� Trigger System

The triggers in our experiment had � types of logic according to target physics
modes �Trig��� �� �� �	� In addition� it had one type to study beam
associated
backgrounds �Trig��	� and three types for calibrations of detectors and elec

tronics �Trig��� �� 
	� listed in Table ���� The trigger system was designed to
take data for the physics mode �Trig����	 and some calibration mode �Trig��
and 
	 simultaneously� Each logic for physics modes was composed of two
levels� The level � trigger was produced by fast NIM logics within ��� nsec
after the particle passage through the detectors� The level � trigger was made
by a set of hardware processors within �� �sec�

The information used at the level � was the number of counter hits and
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Figure ����� The trigger counter plane TC�X and �Y�
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Table ���� Physics and calibration trigger modes�

Trigger mode Target

Physics

Trig��
KL � e�e��
KL � ��e�e�� KL � ���e�e� a

Trig�� KL � ������

Trig�� KL � e�e�e�e�

Trig�� KL � ����e�e�

Calibration

Trig�� Random Trigger b

Trig��
CsI Energy Calibration �Ke		
GC E�ciency �Ke		
TC��DC E�ciency �magnet o�	

Trig�� Pedestal Run
GC LED Run

Trig�
 Xe Flash Lamp

a We reported a ��% C�L� upper limit of the braching ratio on this
mode �����

b created by the coincidence of unrelated two counters�
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Figure ����� The trigger counter plane TC�X� It was placed in the housing
box of the calorimeter�

their coincidences� The logical requirements imposed on the counter hits at
the level � are listed in Table ���� A logic �TC�� in the table denotes the
coincidence of one counter in TC�X with immediate downstream counters
�three or four counters	 in TC�X� A logic �TC� represents the coincidence
of one counter in TC�F and one of the two counters right behind it in TC�R�
A logic �CSIX�Y	 is a discriminated signal of column�row	
sum� described
in Section ������ with the threshold voltage equivalent to ��� MeV� Once
one of the level � logics was satis�ed� gate signals were provided into ADCs�
TDCs and processors in the level � logic�

The level � trigger had two objects� One was to count the number of
track candidates� this task was done by a coarse tracking processor �CTP	�
by looking for the correlated hits in downstream trigger hodoscopes� The
other was to search for clusters on the calorimeter� it was done by a cluster
�nding processor �CFP	� using the hit positions in the CsI blocks�

The CTP was composed of a sequencer part and a lookup memory in
which possible track patterns had been pre
recorded� There were four CTPs�
two for left arm and two for right arm� Modules in one arm had di�erent
patterns for positive and negative charged tracks� A track to be searched
was de�ned as speci�c combinations of TC�X� TC�X and TC�X� The CTP
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Table ���� Level � trigger hit requirements�

Trigger mode
Source

Trig�� Trig�� Trig�� Trig��

N�TC��	 � � � � � � � � �
N�TC�X	 � � � � � � b � �
N�TC�X	 � � � � � � a � � a

N�TC�Y	 � � � � � � a � � a

N�GC	 � � ) � � � �
N�CSIX	 � � � a � � a � � a � � a

N�CSIY	 	 � � a � � a � � a � � a

� Number of the coincidence signal between TC�X and TC�X�
See the text for detail�

� Number of the column
sum hits in the calorimeter�
	 Number of the row
sum hits in the calorimeter�
a At least � in both arm�
b � � in the Helium run�

also searched electron candidates among the found tracks� by matching the
hit pattern in GC and CSIX� Each module produced an encoded output�
containing the number of charged tracks and the number of electrons� The
information was sent to the decision modules� which will be described below�

The CFP consisted of �� modules �� for each arm	 and a sequence con

troller� Each module received analog signals of CsI blocks from two adjacent
columns� It then discriminated them with a threshold equivalent to ��� MeV�
which was determined to be higher than the energy deposit of a minimum
ionizing particle� The information of hits was latched and converted to a bit
pattern� Then the modules tried to �nd clusters by matching the actual hit
pattern with prescribed patterns� The pattern recognition was carried out
sequentially from the bottom row to the top row under the instruction of the
controller� Using the information of hits in TC�X and TC�Y� the modules
also examined whether or not the found cluster was associated with a charged
particle� Since the threshold was set higher than the energy deposit by min

imum ionizing particles� the cluster associated with a charged particle was
considered as an electron cluster� After the �nding sequence� the number of
clusters and that of electron clusters in each arm were sent to corresponding
decision modules�

Two decision modules with XILINX XC���� logic cell arrays �XLP�XRP	
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Table ���� Level � trigger logics
Trigger mode

Logic
Trig�� Trig�� Trig�� Trig��

N�tracks	 � by CTP �� �	 a � � b �� �	 a � �
N�clusters	 � by CFP � � � � b � � � � b

N�e
TRK	 	 by CTP and CFP � � ) � � � � b

� Number of charged track candidates�
� Number of clusters in the calorimeter�
	 Number of electron candidates�
a E�ective constraint through the requirement of N�e
TRK	�
b At least � in both arm�

Table ���� Trigger rates �Vacuum Run	�

Trigger rate �counts�spill	

Stage
Trig�� Trig�� Trig�� Trig�� Trig�� Trig�


Total
�Logical OR	

Level � ��
K ��K ��� ��� �� ��
Prescale ��� ���� ��� ��� ��� )

���K

Level � ��� ��� �� �
� �
 �� ���

received the information from the CTP and the CFP system� Their task was
to distinguish electron candidates �e
TRK	 more exactly by combining track
and cluster information�

Finally� a master decision module �XDM	� which was the same module as
XLP�XRP but loaded di�erent logic program� produced �accept signals for
various trigger types� Trigger logics for four physics modes were summarized
in Table ����

If no accept signal was asserted within �� �sec from the gate signal by
the level � trigger� conversion processes in ADCs and TDCs were stopped
and the event was discarded�

The trigger rates under a typical running condition were summarized in
Table ���� The dead time was from ��% to ��% typically�
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��� Data Acquisition System

If an event was accepted by one or more trigger modes� the data acquisition
�DAQ	 system read out and then registered the information of detectors�
Table ��� lists contents of the registered data� which consist of digitized
data from ADCs and TDCs� latched hit patterns of hodoscope channels� and
logics of them� The composition of DAQ system is shown schematically in
Figure������ A sequence of data processing is described below��

At �rst� when an event was accepted by the level � trigger� front
end
electronics modules began processing the information from various detectors�
The most of the front
end modules were controlled on the basis of TKO stan

dard which had been developed at KEK��
�� Analog signals from CsI blocks
were digitized by charge
sensitive ADCs with ���
nsec
wide gate� Discrimi

nated signals from drift chambers were processed by �GHz pipelined TDCs�
Discriminated signals from hodoscopes were latched with ��
nsec
wide gate
by strobed coincidence �SC	 modules� and then digitized by TDCs�

Each front
end module in TKO boxes performed three steps of data pro

cessing� sample
and
hold� digitization� and readout� If these processes were
executed in series� modules had been busy for a long time� To avoid this
type of dead time in data processing� we adopted a pipeline operation be

tween these stages� Once a gate signal was received� a module started the
sample
and
hold and the digitization process� The digitized data were trans

fered to a register where they were held until the readout cycle� After the
transfer� the sample
and
hold part of the module became free to process
the next event even before the readout process for the previous data� This
parallel processing reduced the dead time substantially�

If an accept signal by the level � trigger was asserted� a controller �SCH	
in each TKO crate scanned modules sequentially and examined whether or
not data existed in the registers� If existed� digitized data were read out
by SCH and transfered to a corresponding memory module �MP	 in a VME
crate through a twisted �at cable� Data had been stored in the MPs during
one beam extraction cycle�

After a beam extraction period� all the data in the MPs were transfered
into memories on CPU boards via the VME bus�
 The role of these CPUs
was to build up the event data� The event
building task was shared by three
CPUs �CPU
A�B�C	 to speed up processing at the �rst stage� Then the
data built by each CPU were sent to another CPU �CPU
M	 via dual port

�Detailed description can be found in Ref������
�One CPU was operated on OS�
 ��
�
 system �CPU�B in the �gure� that is a real�time

operating system for Motorola ��


 family� Other CPUs including master event�builder
�CPU�M� had SPARC architecture and worked on SunOS�
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memories� and were integrated by a master event
builder�
After the event
building procedure was �nished� integrated data were

transfered to a local disk for quick analysis� to a local DAT via a SCSI bus�
and also to the workstation cluster via FDDI LAN for main analysis�
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Table ���� Contents of the data�

Source Sort

Detectors

TC�X SC a� PLTDC b

TC�X SC� TDC
TC�X�Y SC� TDC� ADC c

TC� SC� TDC� ADC c

GC SC� TDC� ADC
calorimeter TDC� ADC

drift chamber
TAC �DC�U�V�DC�U�V	
PLTDC�others	

Logic
TC�� SC� TDC

CSIX�Y SC� TDC

Trigger info�

CTP track info� �encoded	

CFP
block hit pattern �latched	
cluster info� �encoded	

Scaler

beam
condition

spill count� clock
target monitor �TM	
intensity monitor �SEC	

live
time
monitor

w� and w�o BUSY d

a The latched information by the strobed coincidence module�
b Of individual PMTs �TC�F�U�D�TC�R�U�D	 and of logic
�TC�X �

c Of individual PMTs �TC�X�U�D�TC�X�U�D	�
d BUSY signal was asserted by trigger control module�



Chapter �

Event Reconstruction

The data analysis is classi�ed into two phases� The �rst phase is called
�event reconstruction � and is presented in this chapter� This is an analysis
step to obtain basic physical quantities from raw data� The second phase is
to identify the signal mode KL � ����e�e� from the events reconstructed
in the previous phase� This phase is a heart of physics analysis� and will be
described in the next chapter in detail�

The event reconstruction proceeds as follows� First� hit positions on the
drift chambers are reconstructed and trajectories of charged tracks� their
charge signs and their momenta are determined� Then obtained are hit po

sitions and deposited energies on the calorimeter� With these quantities�
particle species of the charged tracks are identi�ed and photon candidates
are singled out� Finally� the decay vertex point is calculated�

��� Track Reconstruction

In this experiment� a track registered by a charged particle was measured
with � sets of drift chambers� The track reconstruction thus started with
determination of hit positions in the chambers� Next� charged track candi

dates are found from a set of hits on the drift chambers� They are �tted
as the track and their �
dimensional track parameters are evaluated� In the
following� these procedure will be explained in detail starting with the drift
chamber calibration�

����� Calibration of Drift Chambers

In order to calculate a hit position from hit time information �registered as
TDC channels	� we need two basic quantities� one is the TDC channel �T�	

�
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Figure ���� �a	 A typical drift chamber TDC distribution and �b	 its cumu

lative distribution�

that corresponds to a zero drift time� and the other is a precise relationship
between drift time and drift length �R
t relation	� Of course� precise position
information of chambers themselves in the detector system is also in need�

Figure ����a	 shows an example of a TDC distribution� Roughly speaking�
the left edge of the trapezoid distribution corresponds to T�� To be speci�c�
it is de�ned by the intersecting point of a straight line which is �tted to the
left side �steep
rising part	 of this distribution with the time axis� The R
t
relation is determined as follows� A time spectrum of a hit can be expressed
by

dN

dt
�

dN

dR
� dR

dt
� ����	

where N denotes the number of events and R denotes the minimum distance
from a wire to a track� Suppose distribution of track positions in a cell is
uniform� i�e� dN	dR � C��constant	� The assumption was met very well
for our drift chambers if tracks were selected to pass normal to the chamber
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plane� Then� the integral of Eq�����	 gives the R
t relation�

Z T

T�

dN

dt
dt � C � �R�T 	� R�T�	� � C �R�T 	 � ����	

where R�T�	 equals to zero by de�nition� Figure ����b	 shows an example of
the integrated distribution� i�e� the left hand side of Eq�����	� as a function
of the integration limit T � The distribution levels o� when R�T 	 reaches its
maximum� i�e� a half of the cell size �� mm	� Thus R
t relation� namely the
distance R as a function of T � is given by the curve in Figure ����b	�

We now discuss about determination of the chamber positions in our
experimental setup� Prior to the experiment� a rough survey was performed
with levels and optical instruments� Its nominal accuracy was � mm� Much
more precise positioning was required to achieve high
resolution tracking�
and hence determination of momentum and�or vertex position� We took
the following paths to realize it� At �rst� calibration data were taken with
the analyzing magnet turned o�� this gave abundant straight tracks� Using
these events chamber�s mutual positions were adjusted until they correctly
reconstructed these �straight tracks�

Next� the chamber�s local coordinate system was located with respect to
the calorimeter and the target�� To this end� we used events containing elec

tron or positron tracks� and events reconstructed as the KL � ��������� �
��	 decay� With the former events� the track position projected on the
calorimeter by the chamber system was compared with the cluster position
determined by the calorimeter itself �see Section �����	� With the latter
events� the reconstructed KL momentum vector was extrapolated back to
the target position� In this way� the chamber�s local coordinate system was
re
positioned to conform with the other detectors��

����� Track Search

In the spectrometer system� a track was sectionally straight in both upstream
and downstream sections of the magnet and was bent horizontally by the
magnetic �eld� Thus� a track �nding and �tting procedure was to reconstruct
straight tracks separately in both sides of the magnet� and to match them at
the center�

�The absolute coordinate system was de�ned using the plane of the calorimeters front
face and the center of the production target� Thus it was essential to establish the relation�

�It was necessary to use these two sets of events to �x the o�set and direction of the
local coordinate system�



��
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X’-plane

Two pair-hits
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A pair-hit A single hit

(might be a spurious one)

Figure ���� Schematic view of pair
hit search

Track 	nding 
��dimensional�

The track �nding is a procedure to form a straight line by connecting hit
wires� In this subsection� chambers having the same view �X or U or V	
on one side of the magnet �upstream or downstream	 are grouped together�
and straight tracks in a plane ��
dimensional	 are searched separately in each
group�� As described in previous chapter� each drift chamber set consisted
of � readout planes X
X�� U
U�� and V
V�� Adjacent planes� primed and
non
primed� were staggered by a half
cell size and were treated as pair in the
following analysis� We requested a track to register hits in both planes� This
�pair
hit search procedure is schematically shown in Figure ���� A genuine
track candidate� shown at the center in the �gure� had to have a �pair
hit �
i�e� two single hits adjacent each other� Successive two hits in a plane and a
sandwiched single hit in the other� as shown on the left� were treated as two
pair
hits here though they might belong to a single track� An isolated single
hit� shown on the right� was assumed to be a spurious one� To be identi�ed
as a hit� its hit time was required to be within a window from T�� �� ns to
T� ! ��� ns which covered drift time corresponding to a half cell size plus a
margin� Also note that if plural hits existed within this time window only
the �rst hit was used for simpli�cation�

The next step of track �nding was to search for a combination of pair

hits belonging to a single track� This task was started with the downstream
X
view chambers �DC�X and �X	 due to the following two reasons� First�
there were in general fewer hits in downstream chambers because background
particles� especially low momentum particles� were swept out by the analyz

ing magnet� Second� they were sandwiched between two trigger hodoscopes

�We treat the downstream U and V chambers di�erently� As mentioned in Sec�����	�
the readout electronics of these chambers were di�erent from the others� and it resulted
in somewhat worse position resolutions� We thus decided to use their hit positions as
auxiliary information in the �nding and �tting procedure�
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�TC�X and TC�X	� requirement of hits at these hodoscopes drastically re

duced possible track candidates� To take an advantage of these hodoscopes�
we �rst introduced a new concept called �road � This was de�ned as follows�
We listed all hit counters in TC�X and TC�X�	 A �road was a strip spanned
by two hit counters� one from TC�X and the other from TC�X� We formed
all possible roads� and searched for track candidates within these roads� The
process above is schematically shown in Figure ����a	� Note that the shaded
region is excluded from the track search since it is outside of any roads� Up to
this point� we searched for track candidates using only hit wire information�
We can obtain more precise track parameters with drift time information
from each wire� We �tted the hit positions to the function of X � aZ ! b�
As is well know� a drift chamber has a left
right ambiguity in determining
the hit position� We checked both left and right case for each hit� and then
selected a combination that gave the minimum ��� We now obtained a set
of track candidates� and their associated parameters� in the downstream Z
X
plane�

The �nding procedure in upstream X
view chambers was the same as that
in downstream chambers except for de�nition of a road� In stead of TC�X
hits� the X positions at the magnet center extrapolated from downstream
track candidates were used� The role of TC�X was replaced by an area
occupied by the neutral beam in the decay volume� from which any decay
products originated� An example is shown in Fig�����b	� After �nding track
candidates� we also checked an existence of a hit at the corresponding counter
in TC�X� And then� we performed the same procedure to get the track
parameters in upstream X
view chambers�

Our next task is to �nd tracks in the upstream U
 and V
view chambers�
In this case� since we had no convenient device to de�ne a road� we simply
examined all possible combinations of pair
hits� The only requirement was
that a candidate track had to pass through the beam region in the decay
volume� Then the track parameters were obtained in a similar manner�

Track 	nding 
��dimensional�

Now we combine track segments in X�U� and V planes to construct �
dimensional
tracks� This procedure was actually carried out only in the upstream sec

tion�� To this end� we chose two track candidates� one from the Z
U plane and
the other from the Z
V plane� and linked together to form a �
dimensional
track� We examined it by imposing the following conditions� The quali�ed
track� when projected onto the Z
Y plane� had to pass through the magnet

�In order to allow tracks to pass through the central gap of TC	X� the beam hole of
TC	X was treated as a counter which was always �red in the �road� de�nition procedure�
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aperture� the hit counters in TC�Y� and the front face of the calorimeter�
In addition� the projection onto the Z
X plane had to be consistent with at
least one of the track candidates formed with DC�X and DC�X� The actual
criteria of the consistency was that the distance in the X
direction between
them� measured at DC�X and DC�X� should be less than � mm�

Now we have two sets of track candidates� one is upstream �
D tracks�
and the other is downstream �
D �Z
X plane	 tracks� We picked up a pair of
tracks� one from each set� and checked the following two conditions to make
a consistent bent track� One condition is concerned with consistency of the
two tracks at the magnet center� and the other is related to the downstream
trajectory in the Z
Y plane� We extrapolated each track �downstream and
upstream	 to the magnet center� and calculated the di�erence in X
positions�
This di�erence� called DXMAG � was required to be within �� mm� �Much
more tighter cut will be applied at the later analysis stage�	 The downstream
track at this stage had no Y information ��
D track	� We extrapolated the
upstream Z
Y trajectory� and adopted it as that of the downstream track� We
then checked whether or not this �
D track had actual hits in the downstream
U
 and V
view chambers as well as in the TC�Y hodoscope�

This is the end of the track �nding process� we now have sets of track
candidates� continuous from upstream to downstream of the magnet� with
appropriate hits in all chamber planes and counter hodoscopes� Together
with their track parameters� they were handed over to the next ��tting 
process�

Precision track 	tting

The purpose of the step is twofold� one is to obtain more accurate track
parameters by an overall �t� and the other is to reject �bad tracks with
some criteria� It proceeded as follows� First we �tted all hit positions of the
upstream �� chambers �DC��DC� of X
X� U
U� V
V�	 to a straight line ��
D
track	� and calculated the ��
value of the �t� Here the chamber�s position
resolution was taken to be ��� �m through all the chambers� We then cal

culated the con�dence level associated with it� The resultant distribution�
shown in Figure ���� should be �at if our ��
distribution was obtained with
ideal statistical ensemble� In reality� it shows a �at distribution with a sharp
peak around CL 	 �� Most of the tracks in the peak were expected to stem
from a false �track � connecting unrelated hit points� However� they might
contain a real track which had one or more spurious hits by� for example� an
additional track crossing accidentally� With an intention to save those� we
did repeated �ts� Namely� we accepted the �t �and the track 	 if its con�

dence level is �% or bigger� If not� we removed a hit one by one intentionally
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Figure ���� The con�dence level distribution of the �t for the upstream
chambers� All the hits from �� readout planes were used for the �t� The
peak around CL 	 �% contains false track as well as spurious hits �see text	�

and recalculated its con�dence level� This procedure was repeated until it
found the �t with CL � �% or there were only � original hits �out of �� hits	
left for the �t�

Having determined the best track parameters� we again calculatedDXMAG �
the di�erence in X
positions extrapolated by upstream and downstream tracks�
This time� we applied a tight cut on DXMAG � it was especially useful to re

move events in which one of the pions decayed into a muon inside the magnet�
Note that the �
decay events turned out to be one of the most �danger

ous backgrounds �see Section ���	� To determine the cut value� we made
actual DXMAG distributions as a function of observed track momentum p
�see Section ��� for p	� We obtained the width ��	 by a �t with the Gauss
function� We employed a standard �� cut� which is shown in Figure ����
The curve in the �gure was obtained by �tting the points to the function

of
q
c�� ! �c�	p	�� where c�� c� denote some constants� It indicates that the

dispersion in DXMAG was originated dominantly from chamber resolution
�related to c�	 and multiple Coulomb scattering �related to c�	p	�

��� Momentum of Charged Particles

We present in this section a method to determine charged particles� momen

tum starting with track parameters obtained in the previous section� We
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distributions� The curve in the �gure was obtained by �tting the points to

the function
q
c�� ! �c�	p	�� See text for c� and c��

employed an e�ective �eld approximation for this purpose� We assumed a
uniform magnetic �eld inside the magnet gap� The momentum of a charged
particle is given by

p � ���qBR	 cos� � ����	

where p is the momentum in GeV�c� q the charge number of the particle�
B the �eld strength in Tesla� R the radius of curvature in meter and � the
pitch angle�

The e�ective �eld B was determined in the following way� Prior to the
experiment� we measured actual magnetic �elds inside and outside the mag

net gap� Given particle�s momentum and incident trajectory� we could trace
it with the actual magnetic �eld�� The radius R could be calculated from the
kick angle between upstream and downstream track directions� With R and
p �and �	� an e�ective value of B for this particular track was determined
from Eq�����	� We averaged such B�s over many trajectories with momenta
generated by a Monte Carlo simulation� Having determined the e�ective B�
momentum p for each track could be calculated� The pitch angle of upstream
track was used as � in the calculation�

�The Runge�Kutta method was employed�
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��� Calorimetry

In order to measure energies and positions of electrons and photons� we
used electromagnetic calorimeter� which was composed of CsI crystals� The
scintillation light output of each crystal block� read by a photomultiplier and
recorded as ADC counts� was proportional to the energy deposit by a particle�
An electron or photon incident on a crystal caused an electromagnetic shower
and deposited almost all energy to crystals around the incident position�
To get their energies� we had to know� at �rst� the coe�cients to convert
an ADC count to a energy� called �calibration constant � We also had to
identify a group of crystals� called �cluster � which belonged to a passage of
one particle� These were realized by the energy calibration and the cluster
�nding procedures presented in this section� The position measurement of
electromagnetic particles was also done using the cluster information� The
method was checked by electron tracks� whose position could be measured
both by the calorimeter and by the drift chambers�

����� Energy Calibration

Before any precise calibration of the calorimeter� the gain of photomultipliers
were adjusted so as to get uniform pulse height to the same energy deposit�
Actually� the number we made uniform was the ADC count to the passage
by a minimum ionizing particle such as a muon and a pion� The deviation
of each photomultiplier gain was adjusted within ���% at the beginning of
the entire experiment�

The gain change� for example� due to the decrease of scintillation lights�
which was caused mainly by the radiation damage� was treated by the precise
energy calibration� It was performed using electron tracks in the KL �
�e� decay �Ke		 obtained by a special trigger to enrich Ke	 events� The
Ke	 candidates were required two tracks� one in each arm� with a vertex
in the decay volume� and �Cerenkov counter hits corresponding to one of
the two tracks� The momentum of the electron and its incident position
on the calorimeter were obtained by the spectrometer� as described in the
previous section� At �rst� we chose one block to be calibrated� We requested
this block to have more than ��% of the summed energy which included
energy deposits in the surrounding � blocks� In case of the peripheral blocks�
additional cuts on the incident position were imposed to avoid the in�uence of
shower leakage� Now� the ratio of the summed energy �E	 to the momentum
�p	 measured by the spectrometer was de�ned as E	p� Since electrons lost
its all energy in the calorimeter by creating a shower� E	p should be unity
within the resolution� We �tted the E	p distribution to the Gaussian shape



�


0

2000

4000

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Constant   4950.

Mean  0.9981

Sigma  0.3272E-01

E/p

E
ve

nt
s 

/ 0
.0

1

Figure ���� E	p distribution of all blocks for electrons� The curve indicates
the best �t to the Gaussian form� The deviation at lower tail was considered
to be the e�ect due to the radiation from electrons�

and adjusted the calibration constant of the target block so that the mean
of E	p became one� We applied this process to all blocks and then repeated
this entire procedure again with new constants� After third attempt� changes
in the calibration constants were found to be within �%� thus the process was
terminated after the second iteration� Figure ��� shows an E	p distribution
of all blocks into one histogram� The resolution of E	p was found to be
about ��� % over all blocks��

����� Cluster Finding and Cluster Position

Cluster Finding

The method of the cluster �nding we adopted was to �nd a block which
contained larger energy deposit than any of the � surrounding blocks� Fig

ure ��
�a	 shows the schematics of the cluster �nding procedure� When such
a block had an energy of �� MeV or more� and the summed energy including
its surrounding blocks was more than �� MeV� we considered it as a cluster�
Note that if there were two clusters nearby� shown in Figure ��
�b	� the en

ergy and position of both clusters might be incorrectly calculated� It caused
the ine�ciency in the analysis of physics modes� The in�uence of this e�ect
due to the KL decays could be estimated by Monte Carlo simulation� and
will be discussed in Section ���� However� one due to accidental activities
from beam backgrounds could not be treated in the same way� Its e�ect will

�The average momentum of electrons used in the calibration was about 	�� GeV�c�
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Figure ��
� Schematic drawings of the cluster �nding procedure� A number in
each box indicates an energy deposit in MeV� The blocks marked with a circle
were identi�ed as a center of a cluster� Each �gure represents �a	 a typical
case� and �b	 a case in which there were two particle incident nearby and their
showers merged each other� In this case� the energy of both clusters were
incorrectly calculated� It caused the ine�ciency in the analysis of physics
modes� as will be discussed in Section ����

be discussed in Section ������

Cluster Position

Once a cluster was de�ned� the sum of energy �E	� the center of gravity
weighted by energy deposit �XG� YG	 were calculated� The point �XG� YG	
was used as the cluster position� in case that the incident particle was neither
an electron nor a photon� In case of an electromagnetic component �e� or
�	� whose shower pro�le was well described by an exponential form� another
calculation method was employed� Figure ��� shows the relation between
X position of electrons measured by drift chambers �XDC	 and that by the
calorimeter �XG	� X �

DC and X �
G in the �gure are the local coordinates in

which the center of the block was de�ned as the origin� It was found that the
relation between X �

DC and X �
G also depended on the incident angle �
	 to the

block� in addition to the well
known �S
curve behavior ����� We calculated
the position X �

calc� as a function of X �
G and 
� by

X �
calc � b � sinh�� ��X �

G	�	 sinh��	b	� ! A�
 ! A	

	 � ����	

where � is a half width of a block� i�e� �� mm� The coe�cient b is a measure
of the shower shape in the calorimeter while parameters A� and A	 are the
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Figure ���� Position resolution of the calorimeter for electrons in the X
view�

correction coe�cients for the incident angle� These parameters �A�� A	 and
b	 were obtained by �tting the actual data to the function of Eq�����	� The
position resolution� shown in Figure ���� was de�ned as di�erence between
X �

DC and X �
calc� and was found to be about 
 mm�

����� Timing Requirement

To reduce accidental clusters� a timing requirement was imposed on signals
from blocks� which were discriminated with a threshold voltage equivalent to
about �� MeV� Since the energy of incident particles extended over a wide
range� the timing jitter due to the pulse height variation was a important
matter� Figure �����a	 shows a scatter plot of TDC vs ADC counts in Ke	

events� As can be seen in the �gure� there existed obvious correlation between
the hit time and the pulse height of blocks� To alleviate the timing jitter� we
made a correction to TDC counts with ADC counts� the correction function
was obtained by �tting the distribution to the polynomials� Figure �����b	
and �c	 show a scatter plot of TDC vs ADC after the correction and its
projection onto TDC axis� respectively� Fitting to the Gaussian shape� as
shown in Figure �����c	� we found the timing resolution to be about 
�� psec�


We required a cluster to occur within ���� nsec �which is ��� cut	 of the
event time� In the actual analysis process� the corrected TDC of the cluster�s
center block was examined� Note that in the region below ��� counts of ADC
�equivalent to about ��� MeV	� the dependence of TDC upon ADC value
was so steep� as can be seen in Fig������a	� that a careful correction was
needed� Therefore� for simplicity� no timing cut was applied to the clusters

�About �� psec per count in the TDC we used�
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Figure ����� TDC distributions of the block in the calorimeter� �a	 A scatter
plot of TDC vs ADC counts� As can be seen in the plot� there existed clear
correlation between the hit time and the pulse height of blocks� A curve in the
plot represents a function� with which the correction of TDC was made� �b	
The relation between ADC and TDC counts after the pulse height correction�
Below ��� counts of ADC �� ��� MeV	� no correction was attempted �see
text	� �c	 The distribution of corrected TDC counts� It is a projection of �b	
onto TDC axis�
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Figure ����� Scatter plots which indicate distance between track position and
cluster position for �a	 MC and �b	 one set of data� They are drawn with
proportional boxes� In both cases� the cluster position is represented by the
center of gravity of a cluster�

with less than ��� MeV�

��� Particle Identi�cation

Charged Cluster

Any charged particles� either electrons or pions� should have both tracks and
clusters� We de�ned a �matched track as the track whose projection onto the
calorimeter was within 
� mm from a certain cluster� Figure ���� shows the
distributions of the distance between track and cluster positions� �a	 Monte
Carlo events for KL � ������

D and �b	 an example of experimental data�
respectively� �X��Y 	 in the �gures were de�ned as XDC �XG�YDC � YG	�
the distance between X�Y	 position measured by drift chambers and that by
the calorimeter� The cut value of 
� mm� represented as a circle in the plot�
was determined from the distributions with some margins�

To identify species of charged particles� we used the information of their
energy deposit in the calorimeter �E	� their momentum measured by the
spectrometer �p	 and hits of Gas �Cerenkov counter� An electron was iden

ti�ed as a matched track with its energy deposit in the calorimeter to be
at least ��� MeV� the energy
to
momentum ratio �E	p	 within the range of
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Figure ����� E	p distribution for �� �solid histogram	 and �� �dashed his

togram	 in events identi�ed as KL � ������� The KL � ������ iden

ti�cation was not used the information of E	p� Pions in the region of
��� 
 E	p 
 ��� would be misidenti�ed as electrons�

��� 
 E	p 
 ���� and gas �Cerenkov counter hits in corresponding cells� It
can be seen in Fig����� the E	p distribution for electrons� that the range was
equivalent to ��� cut�

A pion was identi�ed as a matched track with E	p � ��
� Figure ����
shows the E	p distribution for pions� which was obtained by pions in recon

structed KL � ������ events� without particle identi�cation by E	p� Note
that we could not distinguish pions from protons or muons� thus what we
called a pion might be a proton or a muon�

The probability to misidentify a pion as an electron was estimated to
be ���% for �� and ���% for �� by the number of pions in the region of
��� 
 E	p 
 ��� in Figure ����� Combined with pion rejection factor of
GC ������	� the probability of misidenti�cation � � e was expected to be
� �� ���� in the worst case� The probability of misidenti�cation e� � was
estimated by �tting the lower tail of E	p distribution for electrons� shown in
Fig����� to an exponential function� It was found to be less than �� ���� in
average�

Figure ���� shows an example of E	p distribution for the actual data at
this reconstruction stage�

Neutral Cluster

A cluster which could not associate with any tracks on the matching condi

tion� was considered as a �neutral cluster generated by a neutral particle�
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Figure ����� E	p distribution for the Vacuum data at the reconstruction
stage of the particle identi�cation�

And we de�ned a neutral cluster which have an energy of more than ��� MeV
as a photon� though they might be other neutrals� for example� neutrons� Any
photons were assumed to originate from a decay vertex�will be de�ned in the

next section	� and their momenta �P� were de�ned from their energy deposits
and the directions of their cluster center from the vertex point�

The misidenti�cation �� � e� � � �� n � �� etc�	 would be the source
of potential backgrounds in the analysis� These backgrounds could be elim

inated only by kinematical constraints� Detailed consideration will be de

scribed in next chapter�

��� Pre	selection

The main purpose of this �pre
selection is to reduce data size by imposing
very loose conditions to the events� Before we present the detail of the
conditions� we de�ne a cross point of two straight lines �or tracks	� Given
two tracks� we searched for a line segment which gave the minimum distance
between the two� If the segment was less than �� mm long� its center was
de�ned as the cross point� It is customary to use the word �Vertex for it�
however it is saved for another� more sophisticated� de�nition �see Sec����	�

The actual conditions are

� At least one track pair with unlike sign of charge�

� At least one cross point inside the region of ���m � Z � ����m �the
decay volume	�
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Figure ����� The distribution of a cross point Z position �see text for the
de�nition	� The arrows indicate the accepted region by pre
selection�

� � or more clusters with E � ���MeV�

� At least � �matched tracks with E	p � ��
�

These conditions were loose enough to have negligible in�uence on the sub

sequent o'ine analysis� but were very e�ective to reduce data size� The
e�ectiveness is illustrated by Figure ����� which shows the actual Z position
distribution of the cross point� There exist two clear peaks� corresponding
with events coming from the decay volume window and the trigger counter
TC��

��� Decay Vertex determination

The process of event reconstruction ends with the pre
selection described
in the previous section� For convenience� we describe here a process called
decay vertex determination� which will be employed in the next chapter�

The decay vertex is a point where KL decays into� for example� ����e�e�

or ������
D� Existence of a well de�ned decay vertex is essential not only to

guarantee the decay� but also to know photon�s momentum direction� if it
exists�

In the actual reconstruction� we de�ned a vertex as a position which
minimized the quantity�

��
v 


X
i

�
di
�i

��

� ����	

where i speci�es a charged track in an event and di denotes the distance
between the i
th track and the vertex point to be determined� The weight
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ing function �i in the denominator represents the extrapolation error at the
vertex� We call �i the track
vertex resolution� Our �rst task is to determine
these resolutions�

����� Determination of Track	Vertex Resolution

We expect the track
vertex resolution �i to have the following functional
form�

�i � �z� � z	

vuutC�
� !

�
C�

pi

��

� ����	

The factor
q
C�

� ! �C�	pi	� has the same physical basis as that of the DXMAG

distributions� the C� term from chamber�s position resolution� and C� term
from the e�ect of multiple Coulomb scattering� The factor �z��z	 represents
the lever arm length of extrapolation� These parameters �C�� C�� and z�	 were
determined with actual events� Actually� the following interactive procedure
was applied to the KL � ������

D events�

Suppose we know the exact vertex position� then the track
vertex distance
di shows a distribution characterized by width �i� In particular� it can be
determined as a function of p or z and thus the three parameters can be
extracted from a �t� With these parameters� we can �predict the value of �i
from the track parameters above�� Given the value of �i for each track� we
can determine the vertex position through Eq�����	� With appropriate initial
values for three constants �C�� C�� and z�	� we repeated the whole procedure
several times until the constants converged su�ciently�

Figure ���� shows the track
vertex resolution of electron and pion tracks
as a function of Z vertex position� The straight lines in the �gure were
linear �ts to the points� These two straight lines cross the horizontal axis
at z � ���� m� which gives z�� Fig����� clearly illustrates validity of the
functional form �z� � z	 in Eq�����	�

In order to extract the other factor in Eq�����	� we plotted a distribution of
d	�z��z	� the vertex
track distance divided by z��z� and obtained its width
by �tting� Fig� ���� shows the resultant width �resolution	 as a function of the
momentum� �a	 for the electron tracks and �b	 for the pion tracks� These data

points can be well expressed by the function
q
C�

� ! �C�	p	�� We obtained

C� � ����� ���	 and C� � ���� ���	GeV�c for pion� and C� � ��

� ���	

and C� � ���� ���	GeV�c for electron�

	This is an iterative process because we need the vertex position Z to determine �i�
The iteration converged very quickly�
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Figure ���
� The ��
v distributions of the real events �solid dots	 and the

Monte Carlo simulation �hatched histogram	� The events were to satisfy all
the conditions� except the ��

v cut� imposed on the KL � ������
D�

����� Calculation of Vertex ��

Now� a decay vertex was calculated as the point which minimized Equa

tion ����	� Figure ���
 shows the ��

v distribution for the following event
samples� the actual data �dot	 reconstructed as the KL � ������

D with

out this ��

v cut� and the corresponding data �histogram	 by a Monte Carlo
simulation� Both distributions agreed well with each other�



Chapter �

Analysis of the Physics Modes

The analysis of the physics modes�KL � ����e�e� andKL � ��������� �
e�e��	� will be presented in this chapter� Although our main purpose is
to measure the branching ratio of the former mode� it is also important
to identify and study the latter� This is because the mode� denoted as
KL � ������

D� has the same decay products as the signal mode� except
for an extra photon� with a large branching ratio� Thus� it can be used to
determine an incident KL �ux� At the same time� it is expected to become
a major background source�

The analysis of physics modes consists of several steps� The �rst step is
called �General Event Selection � In this step� events containing ��� ��� e�

and e� are selected from the event sample obtained in the previous section�
In addition� loose kinematical cuts and preparatory background rejection
cuts are applied� Next� reconstruction of the normalization mode is carried
out by applying tight kinematical cuts� The number of reconstructed events
gives information on the incident KL �ux� Then� the signal mode is identi�ed
among overwhelming background events� This step is a heart of the present
analysis� Finally� the calculation of branching ratio as well as estimation of
possible systematic errors are performed�

Figure ��� shows the schematic �owchart of the analysis process� Below�
we will describe each step in detail�

��� General Event Selection

The main aim of the General Event Selection is to select candidate events for
both KL � ������

D and KL � ����e�e� modes� Speci�cally� events were
requested to have � �and only �	 charged particles composed of ��� ��� e�

and e� with a common vertex in the beam region� Then loose kinematical

��
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Figure ���� Schematic �owchart of the analysis� �Event Reconstruction is to
obtain basic physics quantities from raw data �Chapter �	� �General Event
Selection is to select candidate events for the physics modes� �Normalization
Mode and �Signal Mode are the analysis step to identify KL � ������

D

and KL � ����e�e� events� The �nal branching ratio is calculated from
the reconstructed events with subsidiary information by the Monte Carlo
simulation�
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cuts were applied to reduce data size� Finally� additional cuts were applied
to reject backgrounds coming from nuclear interactions� external photon con

versions etc�

Before we go into the main subject� we should comment on distinction
between the normalization and signal modes� Up to now� bias due to an
extra photon has been carefully avoided� Both hardware trigger and �Basic
Reconstruction process are common to the two modes� This is also true in
the �General Event Selection process��

����� Event Topology Selection

The analysis started with the �Basic Sample obtained in Sec����� At �rst�
we selected events which had � �and only �	 charged tracks composed of ���
��� e�� and e� candidates�

Next� we formed a vertex from these tracks by the method described in
Section ���� We applied a cut on the vertex �� ���

v	 to guarantee a well de�ned
decay point� The actual cut value of ��

v 
 �� was chosen as the following
way� Figure ��� shows ��

v distributions of the actual events �solid dots	� the
KL � ������

D Monte Carlo simulation �light
hatched histogram	 and KL �
����e�e� �dashed histogram	 simulation� They are normalized to have the
same maximum entries� It turns out that the KL � ������

D events with
a �
decay �� � ��	 in �ight make non
negligible backgrounds to the signal
mode� The dark
hatched histogram shows a subset of ������

D simulation
events with a �
decay �actually� decay in the region from decay vertex to
DC�X	� The cut value is shown by the arrow in the �gure� was determined
by looking at these distributions� it removed the tail part stemmed from
�
decay events and�or spurious events� The ��

v cut removed 
�% of the
�
decay events� while retained 
�% of KL � ������

D without �
decay or
KL � ����e�e� events�

We also required a position of vertex to be inside the beam region of
decay volume� The actual cut values are

j � Xj� � mrad
j � Y j� �� mrad

��� m� Z � ����� m �
����	

where � X and � Y are expressed by the angle projected onto appropriate
plane� They were determined from the beam collimators and the decay vol

ume size�

�Since the �
 decays immediately in the KL � �����
D mode� it looks like a decay
with a single vertex for our experimental resolutions�
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Figure ���� The vertex �� distributions ���
v	� Shown are the actual data �solid

dots	� the KL � ������
D Monte Carlo simulation �hatched histogram	 and

the KL � ����e�e� simulation �dashed histogram	� The simulations are
normalized to have the same maximum entry as the real data� The dark
hatched histogram is a subset of KL � ������

D� in which one of the pion
decayed into a muon in the region between the vertex and DC�X� The cut
value is shown as an arrow�

����� Loose Kinematical Cut

We applied very loose kinematical cuts to the data at this stage� Its purpose
is purely reduction of the data to convenient size� We arranged two sets of
conditions� one for KL � ����e�e� and the other for KL � ������

D� and
retained those events that ful�lled either of the two �logical OR	� The actual
conditions are

��� MeV	c� 
 M��ee 
 ��� MeV	c�


� 
 ��� mrad�
����	

for KL � ����e�e� candidates� and

��� MeV	c� 
 M��ee� 
 ��� MeV	c�

��� MeV	c� 
 Mee� 
 �
� MeV	c�


� 
 ��� mrad�
����	

for KL � ������
D candidates� Here 
 denotes the angle between the line

from the target to the decay vertex and the reconstructed momentum vector
summed over the entire decay products �see Fig����	� Hereafter� we call 

the target reconstruction angle� If the parent particle came from the target
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Figure ���� De�nition of the target reconstruction angle 
�

and there was no particle escaped from detection� 
 should be zero within
the experimental resolution�

In searching for KL � ������
D candidates� if there were more than one

photon candidates in an event� we selected the one with which the invariant
mass of e�e�� �Mee�	 was closest to �

� mass �M��	�

����� Backgrounds Rejection

We introduce here background rejection cuts� which are useful to remove
events coming from external photon conversions� nuclear interactions and
pion decay events�

Backgrounds from Photon Conversions

There are several KL decay modes which can mimic KL � ����e�e� by an
external photon conversion process� i�e� a process in which a photon converts
into an e�e� pair in a material� Among them� the KL � ��������� � ��	
and KL � ����� modes are potentially most dangerous because of their
large branching ratio and existence of �� and �� in the decay products� We
examined the e�e� invariant mass �Mee	 to distinguish this process �Mee � �
ideally	� Figure ��� shows the Mee distributions� all obtained by Monte Carlo
simulations� of the following processes�

�a	 KL � ������
D�

�b	 KL � ����e�e��

�c	 KL � ��������� � ��	�
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Figure ���� The reconstructedMee distributions� �a	 KL � ������
D MC� �b	

KL � ����e�e� MC� �c	 KL � ��������� � ��	 with the � conversion�
�d	 KL � ����� �direct M� emission	 MC with the � conversion and �e	
KL � ����� �internal bremsstrahlung	 MC with the � conversion�
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�d	 KL � ����� �direct M� emission	�

�e	 KL � ����� �internal bremsstrahlung	�

In the simulations �c	 through �e	� one photon was forced to convert into e�e�

at the materials in the decay volume window� As expected� the Mee distribu

tions from the photon conversion peaked near Mee 	 �� We demanded Mee

to be larger than � MeV	c��
The photon conversion process had another characteristic feature� Most

of them occurred at the materials upstream of DC�� namely the decay vol

ume window and TC� scintillators�� The tracks by these pairs had almost
the same trajectory up to the magnet� As a result� these tracks inclined to
share many hit cells among the �� layers of DC�X through DC�X�� When
the number of shared cell �Nshared	 was large� Mee was often calculated incor

rectly because of erroneous track parameters� Figure ��� shows the Nshared

distributions for the same data sets �a	 through �e	 in Fig����� From these
distributions� we determined to demand Nshared � �� By studying the Monte
Carlo simulations� it was found that these cuts �Mee and Nshared	 excluded
more than ���
% of e�e� pairs originating from the photon conversion� while
the e�ciencies for KL � ����e�e� and KL � ������

D modes were found
to be ��% and 
�%� respectively�

Pion momentum asymmetry

Backgrounds also stemmed from nuclear interactions� They were generated
by interactions of abundant neutrons in the beam with� for example� gas
atoms in the decay volume� Their rejection was especially important for the
Helium data� In fact� there were many ways to remove them� obviously the
kinematical cut imposed on the invariant mass was the most powerful means�
Here we describe a method called a pion asymmetry cut�

We �rst note that our detector system can reliably distinguish electrons
from other particles� however� what we call a pion might be a muon or a
proton� Therefore if the nuclear interactions produced two charged particles�
such as protons and�or ��� accompanying ��

D ���
D � e�e��	� they might be

identi�ed as ����e�e� candidates� Now we note the nuclear interactions�
such as nN � ��pX� tend to produce fast protons� This results in a large
momentum imbalance between the two charged �!��	 particles� This fact is
in contrast with KL � ����e�e�� in which the ��	�� momenta are more
or less balanced� Thus we de�ned an asymmetry in pion momentum by
A�� � �p�� � p��		�p�� ! p��	� and applied a cut on this quantity�

�Since a track reconstruction demand a corresponding �re on the TC
 scintillators� a
track by a photon conversion downstream TC
 is forbidden�
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Before we describe the detail of this cut� we will show its usefulness in
rejecting another class of backgrounds� these stemmed from the decay of
pions� If one of the charged pions in KL � ������

D decayed into muons in
�ight� its momentum would be calculated incorrectly� Most of such �
decay
events could be removed in the previous analysis stage� namely� the DXMAG

cut and vertex �� cut� However� when the decay happened to occur near the
magnet center or right downstream of the KL decay vertex� the event could
satisfy the above cuts and would become serious backgrounds by making the
����e�e� invariant mass large enough to be inside the signal box� It turns
out that these events have a relatively large momentum asymmetry� and can
be removed by the cut at least partially�

Figure ��� shows the A�� distributions for the following data sets�

�a	 The Monte Carlo events �KL � ����e�e�	�

�b	 The Monte Carlo events �KL � ������
D	�

�c	 The actual events �M�� � �
�MeV	c�	�

�d	 The subset of �b	 with a �
decay and M��ee � ��� MeV	c��

In the actual analysis� we required pion candidates to satisfy jA��j 
 ����
This demand reduced e�ciently the background events due to the nuclear
interactions as well as the pion decay events in KL � ������

D�
Based upon the Monte Carlo simulations� it was found that the e�ciency

of this cut was ����% for KL � ����e�e� and ���
% for KL � ������
D�

��� Analysis of the Normalization modeKL �

�
!
�
�
�
�
D

In this section� the analysis of the KL � ������
D mode will be presented�

As mentioned before� it is very important to identify this mode and study
its nature in this experiment� The reason is twofold� First of all� the mode is
used as the normalization process� namely to calculate the incident KL �ux
and to determine the detector e�ciencies� It is particularly suited for this
purpose since it has the same decay products as the signal mode� except for
a photon� Thus we expect most of uncertainties to cancel out in calculating
e�ciencies of track reconstruction� particle identi�cation and so on� We
should also note that its branching ratio is large and well known� The second
reason is that the mode is expected to become the main backgrounds to the
signal mode� The advantages mentioned above become disadvantages in this
respect� Thus� in any case� the study of this mode is of crucial importance�



��

0

5

10

15

-1 -0.5 0 0.5 1

0

100

200

300

-1 -0.5 0 0.5 1
0

5000

10000

-1 -0.5 0 0.5 1

A+-

E
ve

nt
s

E
ve

nt
s

A+-

E
ve

nt
s

A+-

E
ve

nt
s

A+-

0

5

10

15

20

-1 -0.5 0 0.5 1

πππ MCDππ ee MC(a) (b)

(c) Data (d) πππD MC

Figure ���� The A�� distributions� �a	 the KL � ����e�e� MC� �b	 the
KL � ������

D MC� �c	 the actual events with M�� � �
�MeV	c� �where
the e�ect of ������

D events is small	 and �d	 the subset of �b	 with a �
decay
and M��ee � ��� MeV	c��
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Figure ��
� The distribution of e�e�� invariant mass for KL � ������
D

candidates� The curve in the �gure is a �t by the Gaussian form� The
arrows indicates the cut values�

����� Reconstruction of KL � �����
D

The reconstruction of KL � ������
D was started with �Candidate Sample 

obtained in Section ���� i�e� those events that had ��� ��� e�� and e� with
a common vertex in the decay region� We selected the events that contained
at least one photon candidate�s	� and then tried to reconstruct �� with e�

and e�� In case there were � or more photon candidates� we chose the one
which had the e�e�� invariant mass �Mee�	 closest to the �� mass �M��	�
Figure ��
 shows the resultant Mee� distribution� The �� mass resolution ��
was obtained by �tting the distribution to the Gaussian form and was found
to be about ��� MeV	c�� To identify the Dalitz decay� we requested Mee� to
be within ��� �� ���� MeV	c�	 of M�� � This cut was called the �� mass cut�

Next� we calculated the ����e�e�� invariant mass �M��ee�	� Figure ���
shows the M��ee� distribution after the �� mass cut� The mass resolution for
KL� denoted as �K � was obtained by �tting the distribution to the Gaussian
form and was found to be about ��� MeV	c�� M��ee� was also required to be
within ��K�� ���� MeV	c�	 of the KL mass �MKL

	� This requirement was
called the KL mass cut� The third requirement was related the ����e�e��
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Figure ���� The distribution of ����e�e�� invariant mass forKL � ������
D

candidates after the �� mass cut� The curve in the �gure is a �t by the
Gaussian form� The arrows indicates the cut values�
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Figure ���� The distributions of �a	 
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y of KL � ������
D candi


dates� The curves in the �gures are �ts by Gaussian form�

reconstruction angle 
� the angle between the reconstructed momentum of
the ����e�e�� system and the line connecting the target and decay vertex
�see Section �����	� In the actual analysis� we calculated two projection angles

x and 
y� the angle 
 projected onto the Z
X and Z
Y plane� respectively�
Figure ����a	 and �b	 show the resultant distributions of 
x and 
y� The
distributions were �tted to the Gaussian form yielding their resolutions to
be ���� mrad and ���� mrad� respectively� Approximating these widths to
be equal� a distribution of 
� � 
�x! 
�y becomes the ��
distribution with two
degree of freedom�	 Figure ���� shows the actual 
� distribution� in which
the arrow represents a cut on 
�� The cut value� �� mrad�� was determined in
such a way that the fraction of rejected events was equivalent to a standard
�� cut�

Figure ���� shows the scatter plot of 
� vs M��ee� after the �� mass cut�
The box in the �gure� which represents the KL mass cut and 
� cut� was
de�ned as the signal region for KL � ������

D� The events remained inside
the signal region were identi�ed as the ������

D events in this analysis� After
all� we obtained ����� of the reconstructed ������

D events� of which ����
events in the Helium run� and ����� events in the Vacuum run�

We now argue about possible background contamination into the ������
D

signals� The main source came from the KL � ������ mode� in which one
of the two photons from �� converted into an e�e� pair externally �i�e� in the
beam line materials	� This process was studied by a Monte Carlo simulation

�It turns out this is a simple exponential function�
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Figure ����� The scatter plot of 
� vs M��ee� The box indicates the signal
region�

and was found to be less than �% of the signal� Other contamination is neg

ligibly small� The details of this estimation will be described in Section ������

��� Analysis of the Signal modeKL � �
!
�
�
e
!
e
�

In this section� we describe the analysis of the signal mode KL � ����e�e��
The analysis was started with the �Candidate Sample obtained in Sec

tion ���� same as the normalization mode� The main task here was to select
KL � ����e�e� events from overwhelming background events� The nature
of the task is illustrated in Figure ����� which shows the scatter plot of 
� vs
M��ee �of the ����e�e� system	� The signal region for KL � ����e�e��
indicated by the box in the �gure� is de�ned in the same way as that for
KL � ������

D� The �gure also displays sources of the backgrounds� they
come from KL � ������

D decays since most of the events fell in the mass
region below the KL mass� In addition� there existed several events whose
mass is larger than KL� They were from nuclear interactions still remain

ing in the sample� In the following� we present the method to reject these
backgrounds and identify the signals�
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Figure ����� The scatter plot of Mee� vs M��ee obtained with the events that
contain a photon�s	� �a	 the Helium data and �b	 the vacuum data� The
lines indicate the �� inclusive cut applied to the data�

����� �
 Inclusive Cut

First� we deal with events which contain photon candidate�s	� At �rst sight�
we are tempted to remove all of them since our signal mode does not include
photons� In reality� however� a simple �photon veto is not possible because
it leads to a huge sensitivity loss due to an accidental photon� In stead� we
removed the events which contained the Dalitz decay� i�e� �� � e�e��� This
cut� called the �� inclusive cut� was e�ective to remove the KL � ������

D

decays and�or the events originated from nuclear interactions� Figure �����a	
and �b	 show the scatter plots of Mee� vs M��ee for the events that had
photon candidate�s	�� The �gures correspond to �a	the Helium data� and
�b	the Vacuum data� respectively� There exists a clear cluster of events with
Mee� 	M�� � forming a horizontal band� Most of them satisfy M��ee � MKL

�
their origin is obviously identi�ed as KL � ������

D� In addition� we observe
several events� especially in the Helium data� located in the region above the
KL mass� Their origin is most likely nuclear interactions� We removed the
events which satis�ed the condition jMee� �M�� j � ����

This cut caused over
veto against the KL � ����e�e� events when they
had accidental photons� The over
veto probability was found to be about �%
and will be discussed in detail in Section ������

�When plural photons existed in one event� the value closest to �
 mass was employed
as Mee� �




�

����� Backgrounds from KL� �����
D with missing �

Now we are in a position to deal with the KL � ������
D decay in which

the photon is escaped from detection by one reason or another� At �rst� we
assumed existence of a photon� with an arbitrary momentum �p�� in every
remaining event at this stage�

Then we de�ned the following quantity ��
D�

��
D��p�	 


�
Mee� �M��

�M
��

��

!

�
M��ee� �MKL

�MKL

��

!

�

x
�
x

��

!

�

y
�
y

��

� ����	

In this expression� 
x�
y	 denotes the �
���e�e�� reconstruction angle� pro


jected onto the Z
X�Z
Y	 plane� The denominator in each term is the corre

sponding resolution �see below for the actual values	� This ��

D expresses like

lihood of an event being originated from KL � ������

D� In another words�
with an appropriate �p� value� ��

D��p�	 becomes very small for KL � ������
D�

but in general it remains large for KL � ����e�e�� We thus minimized
��
D��p�	 by varying �p�� �From now on� we denote the minimized ��

D��p�	 by
��
D�	 In Equation ����	� we adopted the resolutions determined from the

reconstructed KL � ������
D events� The actual values are�

�M
��

� ��� MeV	c��
�MKL

� ��� MeV	c��

�
x 	 �
y � ��� mrad
����	

�see Section �����	�
Before we set a cut value on ��

D� we �rst examine e�ectiveness of this
method in more detail� To this end� we compared the experimental ��

D

distribution with Monte Carlo simulations� At �rst� we calculated ��
D�s of

the reconstructed KL � ������
D events without using its observed photons�

Figure ���� shows the resultant ��
D distribution together with the Monte

Carlo data� They agree well with each other� Next� we compared the ��
D

distribution of all the events with the corresponding KL � ������
D Monte

Carlo simulation� Note that there is no ��
D �e�e�� whose invariant mass

is M��	 in this event sample �due to the �� inclusive cut	� As shown in
Figure ����� they both show a peak at ��

D 	 � and agree well with each
other� It proves that most of the experimental events originated from KL �
������

D� as expected�
Finally we studied a restricted set of the events which satis�ed the kine


matical constraints having important implication to the signals� speci�cally

�Note that the decay products were assumed to contain a photon with �p� �
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Figure ����� The
q
��
D distributions� Shown are the actual data �Solid dots	�

the ����e�e� Monte Carlo simulation �solid histogram	 and the ������
D

Monte Carlo simulation �dashed histogram	� The KL �ux in the simulation
was normalized with the reconstructed ������

D events� and the branching
ratio for ����e�e� was assumed to be obtained by our �nal result� The
arrow indicates the cut value ���

D � �
	�

the constraints were jM��ee �MKL
j � ��K �� �
�� MeV	c�	 and 
� 


�� mrad�� The resultant ��
D distribution is shown by the solid circle in Fig


ure ����� We notice that the distribution has two components� a large peak atq
��
D 	 � and a small and broad peak at

q
��
D 	 
� The solid histogram is a

Monte Carlo simulation for KL � ������
D� The KL �ux in the simulation is

normalized with the reconstructed ������
D events� The histogram �the shape

and magnitude	 represents the main part of the data very well� The dashed
histogram is a Monte Carlo simulation for KL � ����e�e�� Its branching
ratio is assumed to be given by our �nal result �see Section ���	� We observe
that the broad peak can be explained very well by the KL � ����e�e�

simulation� We removed the events with ��
D � �
 as being consistent with

KL � ������
D� Examining the Monte Carlo simulations� this cut was found

to remove ���
% of KL � ������
D events with the e�ciency of ��% for
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Figure ���
� �a	 The 
� vs M��ee scatter plot of the KL � ����e�e� can

didate events after the ��

D cut� The solid dots represent the Vacuum data
and the plus the Helium data� The box indicates the signal region� �b	 The
corresponding scatter plot obtained by the ������

D MC simulation� Note
that the MC statistics is � times more than the Vacuum data�

KL � ����e�e�� The arrow in the �gure indicates our cut value on ��
D� It

is evident from the plot that the ��
D cut e�ectively separated the signal from

the overwhelming backgrounds�

����� Signal Identi
cation and Background Subtrac	

tion

Figure ���
�a	 shows the scatter plot of 
� vs M��ee after the ��
D cut� The

solid dots represent data from the Vacuum run� while the pluses represent
data from the Helium run� The �nal conditions are

jM��ee �MKL
j � ���� MeV	c� ���K	


� � �� mrad�
����	

for the events to be identi�ed as the KL � ����e�e� decay� The cuts
are the same as those for KL � ������

D� and are indicated by the box in
Figure ���
�a	� Figure ���
�b	 shows a corresponding scatter plot for the
������

D Monte Carlo simulation� Note that the Monte Carlo statistics is �
times more than the Vacuum data� We can observe clearly a cluster of events
in the signal region in the experimental data� but not in the ������

D Monte
Carlo simulation� We also notice that there are non
negligible backgrounds�
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Figure ����� The number of background events in each region from �i	 to �v	�
�a	 the Vacuum data and �b	 ������

D Monte Carlo simulation normalized
with the reconstructed ������

D�

For the Vacuum data� they consist of two distinct bands uniformly distributed
along the 
�
axis� which are reproduced qualitatively well by the ������

D

simulation�

To study the background quantitatively� we divided the M��ee


� plane

into several regions� and compared the data and simulation in each region
individually� Figure ���� shows the number of events in the regions from
�i	 to �v	 for �a	 the vacuum data and �b	 the ������

D Monte Carlo sim

ulation whose KL �ux was normalized with the reconstructed ������

D� It
indicates that for the vacuum data� the background events were understood
quantitatively� and they were well explained by the ������

D Monte Carlo
simulation� From studying the Monte Carlo events� it was found that there
existed two mechanisms for the ������

D events to pass through the ��
D cut�

One is �
radiation� events in which e��e� radiates �
rays internally or ex

ternally would loose its energy� The backgrounds remaining in the region �i	
and �ii	 correspond to this �
radiation type� The other is �
decay� events in
which ����� decays at the center of magnet or just downstream of the KL

decay vertex would have wrong momentum assignment� The backgrounds
remaining in the region �iii	 correspond to this �
decay type�

In the Helium data� however� there are a certain number of events un

explainable by the ������

D simulation� especially in the high mass region�
They were most likely originated from nuclear interactions� since the Helium
run was di�erent from the Vacuum run only in the decay volume materials�
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Figure ����� The 
� projection of the KL � ����e�e� candidate events with
jM��ee �MKL

j � ��K� The solid line in the �gure represents the ������
D

MC simulation� The KL �ux was normalized with the number of recon

structed events as ������

D� The arrow indicate the signal and control region
boundaries�

Thus� we concluded that the ������
D decay and nuclear interactions events

to be the main background source for ����e�e��

Background subtraction

We now want to estimate the number of background events inside the signal
region� The background events from ������

D have no distinct structure along
the 
�
axis as shown in Figure ���
�a	 and �b	� We expect that the nuclear
interaction events distribute themselves also uniformly along the 
�
axis� be

cause they loose memories of the angle 
 with many unobserved reaction
products� Therefore� we projected the events with jM��ee �MKL

j � ��MKL

onto the 
�
axis� Figure ���� shows the projection result� The dots repre

sents the experimental data� and the solid line represents ������

D Monte
Carlo simulation� The KL �ux in the simulation was normalized with the
reconstructed ������

D events� A clear peak can be observed at 
� � � only
in the experimental data� the ������

D Monte Carlo simulation shows a �at
distribution along the 
�
axis�

We de�ned the �control region with �� mrad� � 
� � ��� mrad�� The



��

signal region correspond to 
� � �� mrad� in this plot� For the Vacuum
data� we observed � events in the control region� and �� events in the signal
region� For the Helium data� we observed � events in the control region�
while no events in the signal region� In the ������

D Monte Carlo simulation�
we observed ��� events in the control region� and ��� events in the signal
region� We assumed that the shape of the background distribution is given
by the ������

D Monte Carlo simulation� This assumption can be justi�ed by
quantitative as well as qualitative agreement between the experimental data
and the simulation in the control region� We then renormalized the ������

D

simulation in such a way that the number of events in the control region
agreed with that of the experimental data� This �renormalization procedure
was to take into account the contribution from the nuclear interaction and
other unknown background source�s	� We stress that the backgrounds from
nuclear interaction are seen mainly in the Helium data� and the amount of
the Helium data is much less than that of Vacuum� This fact� together with
the �at distribution along 
� direction� justi�es the treatment above�

From the procedure described above� we estimated the number of back

grounds inside the signal region events to be ���� By subtraction out the
backgrounds statistically we determined the number of signal events to be
����� ���� where the error represents the data and Monte Carlo statistics�

��� Calculation of the Branching Ratio

The branching ratio is expressed by

Br�KL � ����e�e�	 �
N�����e�e�	

A�����e�e�	 � ������e�e�	
� �

F �KL	
� ���
	

where A� �� N and F denote the acceptance� e�ciency� number of observed
events� and the incident KL �ux� respectively� We can write down a similar
expression for KL � ������

D� Since we know the branching ratio for KL �
������

D� we can� in principle� calculate the KL �ux F � In practice� however�
we take the ratio of the two to obtain

Br�KL � ����e�e�	 � Br�KL � ������	� Br��� � e�e��	

� A�������
D	

A�����e�e�	
� ��������

D	

������e�e�	
� N�����e�e�	
N�������

D	
� ����	

This expression is superior because most of uncertainties would cancel out in
the ratio� In Equation ����	� division between the acceptance and e�ciency
is somewhat arbitrary� in this analysis� we de�ne the acceptance by the ge

ometrical one plus hardware trigger �Level � and Level �	 e�ciencies� On



��

the other hand� e�ciencies of the detector and�or the cuts employed in the
analysis procedure� are classi�ed as the e�ciency� The acceptances and e�

ciencies were determined relying heavily on Monte Carlo simulations as well
as various detector e�ciencies determined experimentally� Before we present
the detailed procedure of their determination� we show the summaries in
Table ��� through Table ���� In each table� the �rd column labeled as �ra

tio is a quantity for the normalization mode ��st column	 divided by the
corresponding one for the signal mode ��nd column	�

Table ���� Number of events �N	

������
D ����e�e� ratio

Signal with error ������ ��� ����� ��� ���� ���

Table ���� Detector acceptance �A	

������
D ����e�e� ratio

geometrical a ����� ���	 ����� ���	 ����


Trigger
level �

N�TC��	 � � ���
� ���
� �����
N�TC�X	 � � b ����� ����� �����
N�TC�Y	 � � b ����� ����� �����
N�GC	 � � ����� ����� �����

N�TC�X	 � � ��
�� ����� �����
N�CSIX	 � � b ����� ����� �����
N�CSIY	 � � b ����� ����� �����

Total ����� ����� �����

Trig�Level � ����� ����� �����

Total ��

� ���� ����� ���	 ���
�
a All of decay products into the calorimeter�
b At least � in each arm�

Detector Acceptance

The detector acceptance is divided into a geometrical acceptance and level
� and level � trigger e�ciencies� The geometrical acceptance is de�ned as
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Table ���� Analysis e�ciencies ��	

������
D ����e�e� ratio

General
event

selection

Track
�nding �� �	 ����
 ����
 �����

Matched track
���	 ����� ����� �����

����e�e�
Topology

����� ����
 �����

Vertex cut a ����� ����� ���
�

� �nding ����� ) �����

Total ����� ����� ��
��

Kinematical
event

selection

Loose
Kinematical cut

����
 ����� ����


Mee cut
b ��
�� ����� �����

jA��j � ��� ����
 ����� ���
�

�� mass cut ����� ) �����

��
D � �
 ) ����� �����

KL mass� 
�

cut
����� ����� �����

Total ����� ����
 �����

Accidental activity ����� ����� �����
��� inclusive cut	 ) ������	 ������	

Total ������ ���
�� ��
��
a Cuts for vertex �� and vertex position�
b Cuts for Mee and Nshared�
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the probability that all decay products are accepted into the calorimeter�


This was determined by a Monte Carlo simulation� and was found to be
����� ���		����� ���	 � ����
� From now on� we use the convention�

�quantity for ������
D		�corresponding one for ����e�e�	 � ratio

to simplify the notation� The level � trigger e�ciency consisted of geometrical
acceptance of various trigger counters and e�ciencies of the trigger logic
requirements� It was found to be �����	����� � ������ Finally� the level
� trigger e�ciency was determined to be �����	����� � ������ Combining
these three factors together� the overall detector acceptance was ���

 �
����		����� � ����	 � ���
�� The main di�erence between the two modes
stemmed from the geometrical acceptance� the ������

D mode� which had an
extra �
ray� was smaller than ����e�e��

Analysis e
ciency

As to the analysis e�ciencies� most of them were common to both signal and
normalization modes and they tended to cancel out in the ratio� The total
e�ciency of analysis was found to be ����%	
���% � ��
�� �see the bottom
row in Table ���	� Below we will describe some notable features in Table ����

The di�erences in e�ciencies between the two modes were mainly due to
the existence of an extra photon in ������

D� In Table ���� items labeled as
�Matched Track �� �	 � �� �nding and ��� mass cut were in�uenced by
the photon� Of these� the �rst one� �Matched Track � demands some expla

nation� if the photon was close to other decay products on the calorimeter�
clusters began to overlap each other� This in turn a�ected the energy and�or
position measurements� resulting in the e�ciency loss in the track match

ing� Multiplying these three e�ects together� we found the e�ect of the extra
photon to be �����	����� � ��
���

The next largest di�erences were caused by the kinematical cuts related
to Mee and A��� The e�ciency due to the Mee cut was ��
��	����� � ������
while that of A�� was ����
	����� � ���
�� The ��

D cut was applied only
to the signal mode� its e�ciency was ���	����� � ������ We found that the
other e�ects caused smaller di�erence in the e�ciency ratio�

Extra hit�s	 in our detector by an accidental coincidence with real events
of ������

D and�or ����e�e� might cause ine�ciency in the event recon


�We allow the case that a pion decays into a muon in �ight and the muon is accepted
into the calorimeter� since it is not discriminated from a pion in our detector system
and analysis� For a similar reason� the case that a photon converts into an e��e� pair
downstream of the analyzing magnet and they are accepted into the calorimeter� is also
allowed in the case of KL � �����
D mode�
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struction procedure� To estimate the e�ect of accidental activities� we used
Monte Carlo events overlaid by �noise events which were obtained experi

mentally by a random trigger �Trig��	� The detail of this estimation will be
described in Section ������ Here we quote its �nal result� it was found to be
�����	����� � ������ As expected� degree of accidental activities varied with
the KL beam intensity� the values quoted above were those correspond to
the average intensity� The systematic error associated with them will be also
examined in Section ������

We �nally comment on the over
veto probability of the �� inclusive cut�
This e�ect has been already included in the simulation of the accidental
activity� We list it in the parenthesis to see its e�ect separately� it was found
to be ���	����� � ������

Final Branching Ratio

We have now determined all necessary ratios to calculate the branching ratio�

A�������
D	 	A��

���e�e�	 � ���

��������

D	 	 ���
���e�e�	 � ��
�

N�����e�e�	 	N�������
D	 � ����	����� �

Using the known branching ratio of Br�KL � ������	 � ���� and Br��� �
e�e��	 � ���� ���� ����� we �nally arrived at

Br�KL � ����e�e�	 � ����� ���	� ���� �

where the error represents the statistical uncertainty�

��� Discussions on Systematic Error

In calculating the �nal branching ratio� we have only considered statistical
uncertainty� In addition� there exist some uncertainties in estimating quan

tities in Equation ����	� These are treated as systematic errors� For conve

nience� we divide them into � categories� those related to �i	 the acceptance�
�ii	 the e�ciency� �iii	 the number of the events and �iv	 the branching ratios
Br�KL � ������	 and Br��� � e�e��	� Several comments are in order
here� First� division between the �rst two categories is arti�cial� but is useful
for clear and easy understandings� Second� we will quote the systematic error
in %� this means the error under consideration can change the �nal result in
that fraction� As will be shown below� the systematic error amounts to be
����% in total� this value should be compared with the statistical error of
� ��%� Below� we will describe each category in the order listed above�
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Figure ����� The KL momentum distributions obtained with reconstructed
������

D events� The dots are the experimental data� and the histogram is
the Monte Carlo simulation�

����� Acceptance	e�ciency Calculations

As mentioned� we used a Monte Carlo simulation to calculate the acceptance�
Various data were used as an input to the simulation� Although the input
data were very accurate� they still had some uncertainties� which resulted in
the error in the �nal branching ratio�

KL momentum spectrum uncertainty

Calculation of the detector acceptance depends upon the parent spectrum
�i�e� the KL momentum at the production target	 used as an input to the
Monte Carlo simulation��A change in the spectrum results in a change in the
acceptance ratio of the two modes and hence the branching ratio�

We constructed a model of the parent spectrum� and examined it by
comparing various experimental distributions with predicted ones� These in

clude the KL momentum spectra measured via the KL � ��������� � ��	
and�or KL � ������

D modes� the vertex Z
position distributions observed
by KL � ������ and�or KL � ������

D� and so on� Although we tuned
various parameters� we could not �nd the �perfect parent spectrum� Thus
there remained some discrepancy between the observed and predictedKL mo

mentum spectrum� as shown in Figure ����� We recalculated the acceptance
using a �corrected parent spectrum which could reproduce the observed one

	To some extent� this also applies to the analysis e�ciency� Thus we actually checked
the product of the acceptance and e�ciency� However� to present a clear discussion� we
simply call it the acceptance instead of the acceptance�e�ciency product�
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in Fig������ The di�erence in acceptance occurred with the recalculation was
treated as an systematic error� In terms of the �nal branching ratio� the error
was ���% and was the largest contribution in this category�

Matrix element of theoretical model

We need the matrix elements of both KL � ����e�e� and KL � ������
D

modes to calculate the acceptance� This is because they determine the spa

tial and momentum distributions of the decay products� which in turn a�ect
the acceptance� We used a theoretical mode ���� for KL � ����e�e�� How

ever� this involves several coupling constants determined experimentally with
some errors� Among them� the parameter called gM� is found to in�uence
the acceptance most� This parameter� determined by the branching ratio
measurement of the direct emission component in KL � ������ has an ex

perimental error of �%� We altered it from its nominal value by ���� It
change the acceptance� and hence the �nal result� by ���%�

The matrix element for the KL � ������ is characterized by the param

eters called Dalitz plot parameters� They were determined experimentally
and had some errors� We also altered these values by ���� and found the
change in the acceptance and e�ciency to be less than �%�

Summing up in quadrature� we concluded the e�ect of uncertainties in
the matrix elements to be ���% in total� This is the second largest error in
this category�

Distribution of z Decay Vertex

The acceptance and� to some extent� e�ciency depend upon the decay Z

position� Figure �����a	 shows the ratio of A � � as a function of Z� Fig

ure �����b	 shows the Z
vertex distribution of the reconstructed KL �
������

D events obtained with the experimental �solid dots	 and Monte Carlo
�hatched histogram	 data� Unfortunately� there is some discrepancy between
the two� it might come� for example� from an local e�ciency drop in the
beam region of the counters and chambers� Fortunately� this discrepancy
makes very little e�ect in the �nal result thanks to the uniform A � � ratio
shown in Fig������b	� Adopting the Z
vertex distribution given by the exper

imental data instead of that by the simulation data� we calculated its actual
e�ect numerically� We found it to be ���% in the �nal branching ratio� and
regarded this to be a systematic error�
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to signal mode�
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Figure ����� �a	The ratio of reconstruction e�ciencies with to without over

laid Trig�� data ��acc	� The horizontal axis represents intensity of Trig�� data
expressed by S�E�C��spill� The dots represents ����e�e�� and the circles
represents ������

D� The line in the �gure was obtained by the linear �t� �b	
The ratio of e�ciency� The curve in the �gure is the ratio of the two �tted
lines in �a	�

Accidental Activity

To estimate in�uence of accidental activities� we used the data obtained by
a random trigger �Trig��	� These Trig�� events should simulate accidental
activities� We amalgamated these events with the Monte Carlo events that
were successfully reconstructed as KL � ����e�e� and�or KL � ������

D�
We then analyzed them again to see the e�ect of amalgamation� or equiva

lently the accidental activities�

The result of this attempt is shown in Figure �����a	� In the �gure� the
horizontal axis shows the beam intensity in which the Trig�� data was taken�
it is expressed in units of the S�E�C� beam monitor�� The vertical axis shows
the quantity called e�ciency ratio� It is de�ned by

�acc �
� � Test events with Trig�� 	

� � Test events without Trig�� 	
�

where � represents the reconstruction e�ciency for the event sample in the
parenthesis� The solid circle and cross points� respectively� represent the

�A proton beam intensity monitor by output from a secondary emission chamber placed
upstream the production target�



��

e�ciency ratio for the KL � ����e�e� and KL � ������
D modes� The

error bars are statistical ones� We observe the e�ciency ratio to decrease
with the beam intensity� The straight lines in Fig������a	 are the linear �t
to the data points�

In Fig������b	� we plot the ratios of the e�ciency ratio for the two modes�
�acc�KL � ������

D		�acc�KL � ����e�e�	� The gentle curve in the �gure
is the ratio of the two �tted lines in Fig������a	� The typical beam intensity
was �
� in S�E�C��spill during the data taking� and more than ��% of the
data was taken in the region from ��� to ��� S�E�C��spill� The e�ciency ra

tio necessary to calculate the �nal branching ratio �see Eq�����		 was a�ected
by accidental activities� however� as can be seen from Fig������b	� its depen

dence on the beam intensity was very weak� We considered the e�ciency at
�
� S�E�C��spill as nominal� and de�ned its dispersion associated with the
dispersion in the beam intensity as a systematic error�

In summary� we obtained ����� and ����� as the e�ciencies by accidental
activities of the signal and normalization modes� respectively� And we found
the systematic error in the �nal branching ratio to be ���%�

Over�veto probability by �� inclusive cut

In the signal mode analysis� we employed the �� inclusive cut� which e�ec

tively rejected the backgrounds from ������

D and nuclear interaction events
�see Section �����	� This cut might cause over
veto for the ����e�e� events
that had an extra photon accidentally reconstructed as �� �with the e�	e�

pair	� Figure ���� shows the resultant over
veto probability as a function
of the beam intensity in units of the S�E�C� beam monitor� It could a�ect
the �nal branching ratio by ���% � ���%� but was neglected in the actual
analysis� We treated this as a systematic error in the e�ciency calculations�

Monte Carlo statistics

In general� the number of Monte Carlo events is limited� and thus it has
statistical error� In subtracting the backgrounds in the signal region �see
Sec������	� we used the Monte Carlo events to �x the background shape� The
statistical error associated with it has been included as the statistical error
of the observed signal events� Here we treat the statistical error of the Monte
Carlo events in determining the acceptance and e�ciency�

The numbers of reconstructed events are ���
 and ������ respectively� for
the KL � ����e�e� and KL � ������

D modes� We found the errors in the
acceptance and�or e�ciency to be ��
% and ���%� respectively� Summing
up in quadrature� we assign ���% error in the �nal branching ratio from this
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veto probability by �� inclusive cut for ����e�e�

Monte Carlo events overlaid Trig�� data� The horizontal axis represents the
beam intensity of Trig�� expressed by S�E�C��spill�

category�

����� Estimation of the Number of the Events

In this category we treated the systematic errors related to the number of
the events N�����e�e�	 and�or N�������

D	�

Background subtraction in the 	nal signals

We checked stability of the background subtraction by employing di�erent
signal and control regions� Actually� widening the region in the M��ee di

rection� we tried jM��ee �MKL

j � ��K and � 
�K instead of � ��K � In
Table ���� we list the number of events in the respective regions and the
number of the signal events obtained by the same subtraction method �see
Section �����	� The errors in the table represent the statistical ones� The
maximum change in the number of the signal events was ���� We considered
this di�erence as a systematic error �
��%	�

Nuclear interaction

In the �nal background subtraction� we assumed almost �at shape along 
�

�actually the shape of ������
D MC	 for the backgrounds� Here we consider

the systematic error associated with this assumption� Under this assump

tion� we estimated the number of background events as follows� We found
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Table ���� stability of the background subtraction

M��ee Data ������
D MC After

region Signal Control Signal Control subtraction

�� �� � ��� ��� ����� ��� a

�� �� �� ��� 
�� ����� ���

� �
 �� ��� ��� ����� ���
a Statistical error�

� events in the Helium data in the region of jM��ee � MKL
j � 
�K and

�� mrad� � 
� � ��� mrad�� On the other hand� based upon the Monte Carlo
simulation� we expect ���� events in this region from the KL � ������

D

mode� The discrepancy in the Helium data can be �lled with nuclear inter

actions� since we could explain the backgrounds in the Vacuum data quantita

tively by ������

D MC� Assuming further that nuclear interactions distribute
uniformly in the M��ee direction� we expect ���� events in the �control re

gion of jM��ee �MKL

j � ��K and �� mrad� � 
� � ��� mrad�� From this
value and the assumption of background shape� we expect ���� events of nu

clear interaction events inside the signal region� This should be compared
with zero event actually observed� In reality� we subtracted out this contri

bution for simplicity� This treatment is correct as long as the assumed shape
of background is correct� Discarding this assumption� we might suppose the
other extreme� i�e� the nuclear interaction changed its shape inside the signal
region to give zero event� This resulted in ���% change in the �nal branching
ratio� Any other shape assumptions made less e�ects� as long as it is consis

tent with null event observation in the signal region� We thus assigned ���%
of the systematic error due to shape assumption of the nuclear interaction�

Contamination by external gamma conversion

The decay mode KL � ����� and KL � ��������� � ��	 might produce
background events when one of the photons converts into an e�	e� pair
externally� The former becomes the background for the signal mode and the
latter for the normalization mode� These processes were again studied by
Monte Carlo simulations�

The background contamination due to the KL � ����� is found to be
less than �% of the reconstructed KL � ����e�e�� The contamination
from the KL � ��������� � ��	 is also found to be less than �% of the
reconstructed KL � ������

D� In summary� the contamination due to the
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photon conversion process would change the �nal results by ���% at most�
and this is treated as a systematic error�

����� Systematic Error from Other Sources

The �nal category is related to the current experimental errors on the branch

ing ratios Br�KL � ������	 and Br��� � e�e��	� They had the experi

mental errors of ���% and ��
% respectively ����� This could change our �nal
result accordingly� Summing up in quadrature� We assigned a systematic
error of ���%�

����� Summary of Systematic Errors

Table ��� summarizes our systematic errors� which are divided into three
categories�

Table ���� Summary of systematic errors in the branching ratio�

Source uncertainty

Acceptance
e�ciency

KL momentum spectrum ���%
Matrix element ���%

Accidental activity ���%
Monte Carlo statistics ���%

Z distribution of Decay Vertex ���%
�� inclusive cut ���%

Number of
Events

Background subtraction 
��%
Nuclear interaction ���%

Contamination from � conversion ���%

Br�KL � ������
D	 ���%

Total ����%

Summing up all the uncertainties in quadrature� the over all systematic
error for the �nal branching ratio was found to be ����%�



Chapter �

Conclusion

In this thesis� the observation of the decay mode KL � ����e�e� and the
experimental measurement of its branching ratio has been reported�

The decay mode KL � ����e�e� can provide a new testing ground for
CP violation� This is because it is expected to occur via a ������ interme

diate state whose two dominant amplitudes are di�erent in CP properties�
Thus CP violation may be observed as an interference between the two�

The experiment� called KEK
E���� was conducted with the �� GeV Pro

ton Synchrotron �PS	 at KEK� Data were taken in two distinctive time pe

riods in ���� and ���
� One period is called �Helium run and the other
�Vacuum run� representing the condition of the decay volume� respectively�
Using only the Helium data� we already reported the branching ratio upper
limit� improved by factor � at that time ����� In this thesis� we analyzed
almost all available data including the Vacuum one� this has enabled us to
establish the decay mode and to measure its �nite branching ratio�

The experiment was performed using a neutral beam line at KEK
PS� The
detector for the experiment consisted of a magnetic spectrometer system to
obtain trajectories and momenta of charged particles� a calorimeter to mea

sure energies and positions of electromagnetic components� a gas �Cerenkov
counter for an electron identi�cation and trigger scintillation hodoscope coun

ters�

The data analysis was divided into two phases� The �rst phase was a
step to obtain basic physics quantities� such as momentum� energy� vertex
position� charge and species of particles� and so on� The second phase was a
step to select KL decay modes by various topological and kinematical cuts�
In particular� two modes� the signal mode KL � ����e�e� and mode KL �

��
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������
D��

�
D � e�e��	� were analyzed and identi�ed�

After various cuts to remove backgrounds� especially� from ������
D and

the nuclear interaction� we �nally obtained �� candidates ofKL � ����e�e�

with ��� background level� This is a clear evidence of the decay mode KL �
����e�e�� The backgrounds originated most likely from nuclear interactions
in the Helium run and from ������

D in the Vacuum run� the latter has been
well understood by the simulation quantitatively as well as qualitatively�

The KL � ������
D mode was employed to determine the incident KL

�ux� This mode is suitable for normalization� since it has a large branching
ratio and the same event topology as the signal mode except a photon� The
resultant number of the ������

D reconstructed events was ����� with less
than �% backgrounds�

In order to determine acceptance and e�ciency� we employed Monte Carlo
simulations� We note� for calculation of the branching ratio� the acceptance
and�or e�ciency ratio of the two modes was needed and thus most of un

certainties common to the two modes were expected to cancel out� Finally�
based on the ���� events identi�ed as the KL � ����e�e� mode� we deter

mined its branching ratio to be

Br�KL � ����e�e�	 � ����� ��� �stat�	� ��� �syst�		� ���� �

where the �rst �second	 error represents statistical �systematic	 uncertainty�
This result is consistent with the theoretical prediction ���� as well as

the recent experimental measurement based on ����� ��� observed events at
FNAL ����� Finally� we conclude this experiment has established the decay
mode KL � ����e�e��



Appendix A

Monte Carlo Simulation

The Monte Carlo simulation has mainly two functions� One is to calculate
detector acceptances and analysis e�ciencies of the KL � ����e�e� and
KL � ������

D modes� which are needed for determination of the branching
ratio� The other is to understand backgrounds� i�e� to determine various
cuts to select signal and reject backgrounds e�ciently and to estimate the
expected number of backgrounds remaining in the signal region� Our simula

tion program was based on GEANT ���� ����� which was developed at CERN
and having been widely used in particle physics experiments� GEANT is a
tool that simulate �ights of particles� their decays and interactions with ma

terials�

In this appendix� we describe the detail of the Monte Carlo simulation
employed in the analysis� At �rst� the simulation of KL decay is described�
Next� we make a comparison between the reconstructed ������

D sample and
the corresponding Monte Carlo sample for a cross check of our Monte Carlo
system�

A�� KL Production and decays

The simulation started with the KL generation in the production target�
The position of the production was determined uniformly in the target� Its
momentum direction was also determined uniformly within the solid angle
of �� mrad �horizontal	 � ��� mrad �vertical	 de�ned by the aperture of
the collimator� while its magnitude was determined according to a spectrum
shown in Figure A��� This spectrum was obtained by KEK
E��
 group ����
who had used the same beam line and had taken data at the same produc

tion angle ���	 as us previous to our experiment� If the KL decay occurred
upstream the entrance of the decay volume� or it passed through the decay

�
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Figure A��� KL momentum spectrum employed in the Monte Carlo simula

tion�

volume� the program went on the generation of a new KL� Once the KL

decayed in the decay volume� the control of the process moved to the routine
which described kinematics of the speci�c decay mode�

KL � ������
D

The decay mode KL � ������
D includes two decay process� In the case

of ��
D � e�e��� the Kroll
Wada spectrum ���� was used� In the case of

KL � ������� we used the matrix element M written by Dalitz plot pa

rameters ���� such as

jMj� � � ! ���
�u! ���
�u� ! ������k�

u � �s	 � s�		m
�
�� � v � �s� � s�		m

�
��

si � �PK � Pi	
� � s� � �	��s� ! s� ! s		 �

where PK is the kaon four momentum vector� and Pi are the four momen

tum vectors of the i
th pion� and i � �� �� � corresponds to ��� �� and ���
respectively�

KL � ����e�e�

In the case of the KL � ����e�e� decay� we employed the distribution
obtained by the calculation of the matrix element in Ref������ In this paper�
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Figure A��� The comparison of e� and e� momentum distribution for the
KL � ������

D events between the experimental data and Monte Carlo sim

ulation� The sign of the momentum represents the charge of e��

the matrix element for KL � ����e�e� is written as

M�KL � ����e�e�	 �Mbr !Mmag !MCR !MSD � �A��	

whereMbr andMmag are the amplitudes associated with the internal bremsstrahlung
and direct M� emission parts of the KL � ����� amplitude� In addition�
MCR is the contribution of K� charge radius� as described in Sec����� The
last termMSD is an amplitude associated with the short
distance interaction
s� de�e��

A�� System Cross Check

Using the reconstructed KL � ������
D sample� We compared distributions

of various kinematical variables with corresponding ones of the Monte Carlo�
The resultant distributions are shown in Figures A��
A��� As can be seen in
�gures� both of the actual data and the Monte Carlo simulation agreed well
with each other�
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