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Abstract

Supernova explosions are one of the most dynamic phenomena in our universe and are still not fully under-
stood. However recent supernova studies revealed that neutrinos play a key role in rviving the supernova
shockwave. This scenario is known as neutrino heating. The observation of SN 1987A confirmed this scenario
and allowed for estimates of the total energy released.

The next step of supernova neutrino observation is to reveal the supernova time evolutio from observation
of supernovae to try and unravel the details of the explosion mechanism. If a galactic supernova happens,
Super-Kamiokande is expected to observe more than 2,000 neutrino events over 10 s. This is expected to be
sufficient statistics to study the time evolution of the neutrino emission. However, most theoretical studies
concentrate on the time period up to core collapse in order to determine whether the explosion is successful.
For this reason they cannot be compared to the late time observations of a terrestrial detector in the event
of a galactic supernova.

This thesis addresses these issues using both theory and observation. On the theory side, we develop a
long time supernova simulation and an integrated analysis framework. This framework addresses supernova
simulation from core collapse to detection on earth. If a supernova is detected, this framework will enable
the rapid analysis of the data and help constrain supernova model parameters.

This thesis shows the results of the long time supernova simulation. The simulation reaches up to 20 s.
The new model (Mori model) predicts 1840 inverse beta decay (IBD) events and 92 elastic (ES) events in the
32.5 kton volume of Super-Kamiokande assuming no neutrino oscillations 1786 IBD events and 71 ES events
for the normal hierarchy and 1860 IBD events and 76 ES events for the inverted hierarchy for a supernova at
10 kpc. The model is shown to be not inconsistent with SN 1987A from a comparison of the time evolution
of the event.

On the observation side a background study concentrating on the region outside of the fiducial volume
(FV) is done for a future supernova observation. Signal efficiencies and cut criteria for inside and outside
of the FV are shown. This thesis demonstrates that a full volume analysis for supernova bursts is possible.
Using events outside the FV, more than 80% of the total events can be used for supernova analysis. A 100%
detection probability is obtained for a supernova explosion up to 100 kpc for the Mori model, up to 150 kpc
for the Nakazato model, and up to 300 kpc for a failed supernova model.

Finally this thesis performs a search for supernovae in 3384 days of data taken during the SK-IV period
and a physical cluster remains in the signal region. However, this cluster’s properties, such as its vertex and
energy distributions, are inconsistent with those expected from a real supernova candidate and is therefore
considered as an unmodelled background. In conclusion, we obtain an upper limit at 90% confidence level
out to the distances where the detection probability is 100% of

0.29 year−1. (1)

The simulation model and supernova search method are also applied to future observations at Hyper-
Kamiokande. There the detection probability is shown to be 100% out to 500 kpc.
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Chapter 1

Supernova

This chapter gives overall information on supernovae from various points of view: classification, observation
and mechanism. In this thesis, we deal with supernovae using neutrinos. In this chapter, supernova clas-
sification is introduced based on observation in §1.1.1 and mechanism of core collapse supernovae is shown
from §1.1.3 to §1.1.7. Finally, examples of supernova observation are shown in §1.2 both optically and with
neutrinos.

1.1 Supernova

Supernovae are one of the most dynamic phenomena in the universe. Supernovae are an explosion at the
end of a star’s life whose mass is than 8 times solar mass. Supernovae are also one of the most important
phenomena in the universe because supernovae are the final step of evolution and release into space elements
which the star (termed the progenitor) have synthesized throughout their lives. However, supernovae are
very complicated, in which all four fundamental forces of nature are involved, and are not fully understood
yet.

1.1.1 Supernova Types

Supernovae are classified according to their optical spectra in Figure 1.1. These classifications are purely
due to optical observation not considering their mechanism. However, these classifications also partially
correspond to the underlying physics. We first check whether spectra have hydrogen. If yes, they are
classified into type-II supernovae. If no, we then check for silicon. If yes, they are classified into type-Ia
supernovae. If no, we finally check helium. If no, they are classified into type-Ib supernovae. If yes, they are
classified into type-Ic supernovae. In terms of their mechanisms, type-I supernovae are called thermonuclear
supernovae while type-Ib, Ic and II supernovae are called core collapse supernovae. Type-Ia supernovae are
also observed in older elliptical galaxies that do not contain young stars while the other types can happen
only in the young galaxies in which star formation occurs actively. This implies that type-Ia supernovae are
from long-lived star systems.

The kinetic energy of the ejecta from supernovae can reach 1051erg. There are two candidate energy
sources that drive supernovae explosions. The first is nuclear energy. If we assume that rapid nuclear fusion
happens and all carbon atoms become iron atoms in stars of mass M , the released energy in that time is

Enuc =

(
mC −

12

56
mFe

)
c2 = 2× 1051erg

(
M

M�

)
, (1.1)

where mC is the atomic weight of carbon, mFe is the atomic weight of iron, c is the light speed and M� is
the solar mass.
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The second energy source is gravitational energy. We assume that stars rapidly contract into the size of
neutron star, which is about 10 km. In other words, we consider the contraction from the radius of Ri to the
radius of Rf , where Ri � Rf . We obtain

Eg =

(
−GM

2

Ri

)
−
(
−GM

2

Rf

)
≈
(
GM2

Rf

)
= 3× 1053erg

(
M

M�

)2(
Rf

10km

)−1

, (1.2)

where G is the gravitation constant. The thermonuclear supernovae are fueled with nuclear energy while
the core collapse supernovae are fueled with gravitational energy. This thesis deals only with core collapse
supernovae because they produce a huge amount of neutrinos while the thermonuclear supernovae do not.

Supernovae

Hydrogen?

Silicon?

Helium?

Ia Ib Ic II

No

Yes

Yes

No

No

Yes

Thermonuclear Core collapse

Figure 1.1: Supernova classification based on their spectra

1.1.2 Stellar Evolution

At first, stellar evolution to core collapse supernovae are described, where “core” means the central part of
stars in diameter of around 1000 km made from iron. Stars support their gravity and produce light and energy
via nuclear fusion. Young stars contain a lot of hydrogen, burn it and create helium. These young stars are
called main sequence star, in which the sun is also included. They are shrinking and deposit helium inside as
the stars run out of hydrogen. Relatively light stars up to 8M� end up forming white dwarfs. They support
their gravity with electron degeneracy pressure. The maximum mass of white dwarfs can be calculated about
1.4M�. If stellar cores are heavier than the limit, they collapse further. Stars heavier than 8M� can burn
helium into carbon and support their gravity again and begin to expand up to 10 − 100 times compared to
stars burning hydrogen. Stars at this stage are called red giant stars. They burn carbon into oxygen, neon,
magnesium, silicon and finally iron. Iron is the most stable element and no more nuclear fusion occurs after it
is produced. These stars then shrink and their mass can not be supported with electron degeneracy pressure.
They finally form neutron stars or black holes after core collapse supernova explosions. Following sections
explain mechanisms of core collapse supernovae.

1.1.3 Time Evolution of core collapse supernovae

Figure 1.2 shows the time evolution of core collapse supernovae. The following sections give detailed ex-
planations about each phases. At first, an iron core can not support the star’s gravity and collapse at step
(1). Electrons are captured on protons and electron neutrinos are generated. These neutrinos can escape
at the beginning of collapse but are trapped in the core after density of the core reach 1011 gcm−3. This
phase is called “neutrino trapping” at step (2). Neutrinos trapped inside the core are scattered with matter
at random, gradually diffuse to out the core and finally become free. The radius at which neutrinos are last
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scattered is called “neutrino sphere”. The neutrinos emitted from supernovae generally reflect the properties
of these spheres. Next, once the density of the core reaches nuclei density ∼ 1014 gcm−3, the core becomes
rapidly stiff due to the nuclear force. However, matter is continually falling onto the inner core and therefore
a rebound is at the boundary and a shock wave is generated in step (3). This wave propagates to the surface
of the star while dissociating nuclei into free nucleons. Electron capture is likely to occur on nucleons rather
than nuclei. Inside the neutrinosphere, neutrinos from electron capture can not escape because the mean
free path of neutrinos is shorter than the diameter of proto-neutron stars (PNSs), which are precursors of
neutron stars and have higher temperature and larger radii than normal neutron stars. However when the
shock wave reach the surface of the neutrinosphere, these neutrinos are immediately emitted. The luminosity
of electron neutrinos at this moment can reach 1053 erg for a few hundreds of milliseconds. This process is
called “neutronaization burst” at step (4). Matter continues falling into the center at step (5), the shock
wave loses its energy due to nuclear dissociation and eventually stalls at step (6). After stalling, neutrinos
from the PNS heat the stalled shock wave at step (7). If shock wave can revive, the shock wave propagates
into the surface and the star explodes. If this revival fails, the star collapse into a black hole. Even after
revival of the shock wave, the PNS contains a lot of energy, about half of the total energy of supernovae. The
energy is emitted as neutrinos. for tens of seconds and the PNS gradually cools down into a normal neutron
star. This process is called “proto-neutron star cooling” at step (8). Supernovae finally leave neutron stars
or black holes depending on mass of their progenitors at step (9).

1.1.4 Core Collapse

Before core collapse, stars support their gravity with electron degeneracy pressure as mentioned in §1.1.2.
The pressure of fully degenerated electrons is

Pe =
1

3

(
3

8π
ne

)4/3

=
1

3

(
3

8π

ρYe

mu

)
, (1.3)

where ne is the number density of electrons, Ye is the electron fraction, whose definition is Ye ≡ ne/(np +nn),
nn and np are the number density of neutrons and protons respectively and mu is the atomic mass unit. From
Equation 1.3, if the electron fraction decreases, the pressure goes down. Generally, free neutrons naturally
decay into protons because the mass difference between the proton mass mp and the neutron mass mn is

mn −mp = 1.293MeV (1.4)

and is larger than the electron mass me. Note that the natural unit system, h̄ = c = 1, is used from here.
So as to invoke the inverse process, the kinetic energy of protons or electrons needs to supply the difference.
Moreover, the electron capture threshold generally become higher when nucleons are bound in nuclei. For
example, the mass difference in the reaction, 56Fe + e− →56 Mn + νe, is

mMn −mFe = 3.7MeV, (1.5)

where mMn is the atomic mass of manganese. The Fermi energy of electrons becomes higher as they become
more degenerate in the iron core. If the Fermi energy exceeds the threshold of electron captures, the electron
captures occurs. The Fermi momentum of electron pF is obtained from∫ pF

0

2d3p

(2π)3
= ne (1.6)

and we get

pF =
(
3π2ne

)1/3
. (1.7)

We ignore the static mass of electron and the Fermi energy of electron µe is finally

µe =
√
p2

F +m2
e ∼ pF ∼ 11MeV

(
ρYe

1010gcm−3

)1/3

. (1.8)
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Figure 1.2: Time evolution of supernova from core collapse. Based on Ref. [1].
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From Equation 1.8, electrons have enough energy for electron capture to occur at Yeρ ∼ 1010gcm−3. The
temperature in the core at the density of 1010gcm−3 is 1MeV and so the assumption that electrons are fully
degenerate is valid. Once electron capture occurs, core collapse is given positive feedback because the Fermi
energy of electron becomes higher as the density becomes higher. In other word, core collapse accelerates.

Another trigger of core collapse is photo-dissociation of nuclei. As mentioned above, iron nuclei can not
undergo nuclear fusion, so compression continues and core temperature gets higher. When the temperature
reaches ∼ 5× 109 K, nuclear fission begins to occur. Nuclear fusion and fission eventually reach equilibrium.
This state is called “nuclear statistical equilibrium”(NSE). In this state, the chemical potential µ(Z,N) of
nuclei that have Z protons and N neutrons is

µ(Z,N) = Zµp +Nµn, (1.9)

where µp and µn are the chemical potentials of free protons and neutrons. Equation 1.9 is equal to the
criterion that the free energy of a system must be minimum. The definition of Helmholz free energy F is

F = U − TS, (1.10)

where U is internal energy, T is temperature and S is entropy. Minimization of internal energy and maxi-
mization of entropy compete to minimize Helmholz energy. Generally speaking, the former is more important
in the lower temperature while the latter is more important in the higher temperature like cores before core
collapse. As a result, the number of lighter nuclei such as helium and hydrogen increases as iron nuclei
dissociate. This reaction is generally endothermic. For example, we assume one of iron into 13 helium-4s and
4 neutrons and one of nickel-56 breaks into 14 helium-4s,

56Fe→ 134He + 4n− 124.4 MeV (1.11)

56Ni→ 144He− 87.9 MeV. (1.12)

In addition, we assume helium dissociates into nucleons,

4He→ 2p + 2n− 28.3 MeV. (1.13)

The energy of these reactions is supplied by thermal photons.
Iron cores before core collapse support their gravity with the pressure of electron degeneracy however the

correction of finite temperature also helps. The photo-dissociation reduces this correction. Note that the
entropy before core collapse is low and around ∼ 1kB/baryon, where kB is the Boltzmann constant, and there
are only a few percents of nucleon and helium nuclei in the core. However, even a small number of these
particles are enough to trigger core collapse.

1.1.5 Bounce

After core collapse, falling material bounces at the center. Figure 1.3 shows a schematic diagram of time
evolution from a middle of core collapse, bounce to shock wave propagation. Collapsing cores are divided into
two regions, the inner core and the outer core. The inner core contracts at subsonic speed while the outer
core contracts at supersonic speed at step (a). This speed difference is important for the explosion because
if the entire core just adiabatically collapses, the core comes back to the same state after bounce. Matter at
density of nuclei, ∼ 3× 1014 gcm−3 rapidly become stiff with nuclear force and accordingly recover stably at
step (b). Core bounce begins at the center and spreads into all of the inner core while the outer core, which
moves at supersonic speed, does not receive information on the bounce at the center. The inner core and the
outer core, violently collide at their boundary and shock wave appears. The inner core works like a piston
and pushes matter forward at step (c).
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Figure 1.3: Time evolution from core collapse to shock wave propagation. [2]

1.1.6 Shock stall and revival

The shock wave propagates through the core dissociating heavy nuclei. This dissociation disperses the energy
of the shock wave. If shock wave dissociates iron of 0.1M� into helium via the reaction 1.11, the energy loss
is

Eloss ∼ 4× 1050erg

(
M

0.1M�

)
. (1.14)

Typical shock wave energy is ∼ 5× 1051erg, or if a mass of the outer core is heavier than 0.5M�, the energy
is entirely exhausted. Typical mass of an outer core is about 0.9M� and shock waves basically stall in outer
cores. Stalled shock waves accrete onto PNSs which are forming at this stage if not gaining energy.

To revive shock waves, we have to heat the shock waves again. A promising process is neutrino emission
from the center. Figure 1.4 shows the schematic diagram of a supernova at shock wave stalling. A PNS is
forming in the innermost region which is hot and release lots of energy as neutrino. The energy emission
from the neutrino sphere cools down the PNS. A small part of the neutrinos react on nucleons, which are
produced from nuclear dissociation behind the shock wave,1.3

νe + n→ p + e−, (1.15)

ν̄e + p→ n + e+. (1.16)

Note that the other type neutrinos also react but their coss sections are much smaller. Heating efficiency per
a necleon

(
dE
dt

)
abs

is(
dE

dt

)
abs

∝ Lν
4πr2

= 8

(
Lν

1052 ergs−1

)( εν
10MeV

)2 ( r

200 km

)−2

MeVs−1, (1.17)
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where Lν is neutrino luminosity, r is radius of nucleon and εν is neutrino energy and we assume the cross
section of reaction of nucleon and neutrino is proportion to εν squared. In addition, gravitational binding
energy at the same radius is

Eb
N ∼ G

MPNSmN

r
= 9

(
MPNS

1.4M�

)( r

200 km

)−1

MeV, (1.18)

where MPNS is mass of PNS and mN is mass of nucleon. From Equations. 1.17 and 1.18, one second neutrino
emission is roughly enough to release all of the gravitational binding energy. On the other hand, neutrino
emission from inverse process of 1.15 and 1.16 slightly occurs outside the neutrino sphere. The net energy
transport between matter and neutrino decide whether the shock wave revives or not. We need a numerical
simulation of neutrino transport to estimate the net heating. A roughly estimation however is(

dE

dt

)
net

=

(
dE

dt

)
abs

{
1−

(
2r

rν

)(
Tm
Tν

)}
, (1.19)

where rν is radius of a neutrino sphere and Tν is temperature of a neutrino sphere and Tm is temperature
of matter at the radius at which neutrino and matter interact. The ratio of reduction of neutrino luminosity
(∝ r−2) and emission rate T 6

m decides whether the net heating or cooling. Generally, the latter decreases
faster and consequently net heating occurs at a larger radius. The region of net heating is called “Gain
region”, the region of net cooling is called “Cooling region” and the radius at which heating and cooling
balance is called “’Gain radius’.
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Figure 1.4: Cross section of supernova at shock wave stalling. [2]

1.1.7 Proto-neutron Star Cooling

The last step of neutrino emission is the proto-neutron star cooling phase. In this phase, a PNS cools down
emitting all the types of neutrinos and the PNS are already independent of the outer layer of the star. These
neutrinos reflect the inner composition of the PNS and may have information about the equation of status.
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The densities and the temperatures of the PNSs right after formation are 1014 gcm−3 and 10 MeV. The mean
free path of neutrinos is about

lmfp ∼ 103 cm

(
ρ

1014 gcm−3

)−1(
Eν

10 MeV

)−2

, (1.20)

where ρ is density. The radii of PNSs are about 10 km so that neutrinos take a random walk in PNSs and
thermodynamically diffuse. PNSs has initially relatively high electron fraction Ye ∼ 0.3, which is higher than
that of normal neutron stars. Neutrinos in PNSs are in so-called beta equilibrium µe + µp = µνe

+ µn and
avoid conversion from protons to neutrons due to Pauli blocking. However, neutrinos gradually diffuse and
accordingly the chemical potential of electron neutrino decreases. Thus, neutronization progresses again and
the PNSs approach the neutron-rich state of a normal neutron star with few protons. Finally the chemical
potential of electron neutrino is µe = 0.

Neutrinos in PNSs is thermalized and the spectra are approximated with Fermi-Dirac functions. Assuming
a fully thermal equilibrium, the spectrum is

f(Tν , εν)eq = C
ε3
ν

exp
(

εν
kBTν

)
+ 1

, (1.21)

where C is a normalization constant, Tν is a neutrino temperature. In fact, the temperature of PNSs decrease
close to the surface. and neutrino temperature Tν depends on radius. From a simple discussion, neutrinos at
outer layers have low temperature and can easily go out while those at inner layers have a high temperature,
are more scattered and become cold. In other words, lower energy neutrinos increase while higher energy
neutrinos decrease and accordingly the width of the spectrum become narrower than the original thermal
distribution. This spectrum shape is called “pinched spectrum”.

Not only charged current reaction such as Equation 1.15 and 1.16 but also neutral current reaction occurs.
In supernovae, nuclear bremsstrahlung and electron positron annihilation occur. These reactions generate all
neutrino flavors. In supernovae, mu and tau (anti-)neutrino work the same way because the temperature in
PNSs is not high enough to create a pair of muon or tau. These (anti-)neutrinos are hence designated as νx

altogether.
Figure 1.5 shows where each type of neutrino is emitted. The electron neutrinos are emitted from the outer

layer than anti electron neutrinos because the neutron rich environment makes the reaction of Equation 1.15
more likely to occur than that of Equation 1.16. Energy of anti electron neutrinos is higher than that of
electron neutrinos. The other type neutrinos νx are generated via only neutral current reactions and emitted
from innermost part of the core. In summary, the hierarchy of average neutrino energies is 〈ενe

〉 < 〈εν̄e
〉 <

〈ενx
〉.

1.2 Supernova Observation

The previous section introduces the mechanism and time evolution of core collapse supernovae. This section
introduces supernovae that have been observed. Supernovae have been observed through an electromagnetic
wave and neutrino so far.

1.2.1 Optical observations

Optical searches of supernova can not observe inner star cores. However, optical observation can reach extra-
galactic distances and help estimate the supernova rate in our galaxy. Detected supernovae are summarized
in a catalog. Some optical observations of core collapse supernovae are summarized in Table 1.1. As seen
from Table 1.1, typical supernova explosion energies are about ∼ 1051 erg.

From optical observations, we can estimate the supernova rate in our galaxy. The extragalactic supernova
rate is about R = 1.95±0.41 [100 yr−1galaxy−1] from Ref [3]. The density of galaxies is ng ≈ 0.01 Mpc−3 and
the size of the universe is d ∼ 10 Gpc. The supernova is therefore supposed to happen every 1 second all in
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Figure 1.5: Cross section of PNS during cooling phase.

the universe. The supernova rate in our galaxy is estimated 1.63±0.46 [100yr−1galaxy−1] from a neutron star
birth rate and supernova rate in near galaxies (the top line in Figure 1.6) [3]. From ancient astronomy [22],
2 core collapse supernovae are observed: SN 1054 and SN 1181 [22]. Note that supernovae opposite of the
galactic center are not observed optically because the dust obscures the light traveling to the earth.

Figure 1.6: Supernova rates per galaxy from various estimation [3].

1.2.2 Neutrino Observation

In 1987, a star in Large Magellanic Cloud caused a supernova explosion 50 kpc from the earth. Figure. 1.7
shows after and before the supernova. This supernova is known as SN 1987A. Three detectors on the earth
detected more than 20 neutrino events in total. These events are shown in Figure 1.8. Kamiokande in Japan
observed 12 events however an event is at the background level, IMB in America observed 8 events and
Baksan in Russia observed 5 events at 16:35 Feb. 23th, 1987 (JST). From these events, the energy of the
supernova is estimated ∼ 1053 erg, which is estimated from the distance of the supernova, event energies and
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SN Type Explosion Energy Ejected Mass Ref
(1051 erg) (M�)

1969L II 2.3+0.7
−0.6 28+11

−8 [23]
1973R II 2.7+1.2

−0.9 31+16
−12 [23]

1986L II 1.3+0.5
−0.3 17+7

−5 [23]
1988A II 2.2+1.7

−1.2 50+46
−30 [23]

1989L II 1.2+0.6
−0.5 41+22

−15 [23]
1990E II 3.4+1.3

−1.0 48+22
−15 [23]

1991G II 1.3+0.9
−0.6 41+19

−16 [23]
1992H II 3.1+1.3

−1.0 32+16
−11 [23]

1992am II 5.5+3.0
−2.0 56+40

−24 [23]
1992ba II 1.3+0.5

−0.4 42+17
−13 [23]

1999cr II 1.9+0.8
−0.6 32+14

−12 [23]
1999em II 1.2+0.6

−0.3 27+14
−8 [23]

1999gi II 1.5+0.7
−0.5 43+24

−14 [23]
1987A II 1.7 15 [24]
1997D II 0.9 17 [25]
1999br II 0.6 14 [25]
1983I Ic 1.0 2.1 [23]
1983N Ib 1.0 2.7 [23]
1984L Ib 1.0 4.4 [23]
1994I Ic 1.0 0.9 [24]
1997ef Ic 8.0 7.6 [24]
1998bw Ic 60.0 10.0 [24]
2002ap Ic 7.0 3.75 [25]

Table 1.1: Summary of optical observations of core collapse supernovae.
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the volume of Kamiokande and is consistent with the core collapse scenario. Later, Masatoshi Koshiba, who
was a spokesperson of Kamiokande, was awarded the Nobel Prize in Physics in 2002 for the first observation
of neutrinos from an extrasolar star.

Figure 1.7: Before (right) and after (left) the supernova explosion[4]. The star which is pointed with the
arror in the left picture brightly shines in the right picture.

1.3 Theoretical simulation

As seen so far, various branches of physics are related to the supernova mechanism so that we can not
analytically calculate supernovae and need computer simulations. This section introduces recent supernova
simulation studies and their problems.

1.3.1 Typical simulations

Table. 1.2 shows typical simulations of supernovae. Recently, there are various supernova simulations. A
recent trend of supernova simulation is multi-dimensional simulation because supernova often do not explode
without multi-dimensional effect: such as standing accretion-shock instability (SASI) [26, 27], convection [28]
and rotation [29]. However, it is difficult to simulate even up to 1 s after core collapse in multi-dimensional
simulations due to too expensive calculation costs. That is why one-dimensional simulations are also used
for predictions of neutrino signals [30].

Dimension EoS Gravity Neutrino transport Maximum time Remarks Ref
1D unknown Newtonian diffusive 20 s Livermore model [31]
1D H.Shen[32] full G.R. partially Boltzmann 20 s Nakazato model [17]
2D LS [33] Newtonian full Boltzmann 0.3 s [34]
3D LS [33] pseudo G.R. leakage 0.2 s [35]
3D SFHo [36] pseudo G.R. moment 0.6 s [37]

Table 1.2: Summary of typical supernova simulations.
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Figure 1.8: Neutrino events from SN 1987A. [5, 6, 7].

1.3.2 Simulation problem

Studies of supernova neutrinos addressing their evolution from the explosion to the neutron star birth have
been limited to a few explosion models so far. While there are many numerical studies of supernovae, most
simulations concentrate on understanding the supernova mechanism focusing on only the first second of the
evolution, which is essential to determine whether a supernova explodes or not. Accordingly, there are only a
few studies focusing on future supernova neutrino observation and they typically employ a particular model
which successfully explodes and forms a neutron star [31, 38, 39]. There are also other supernova studies
with respect to the number of expected events based on simulations with prescribed explosions [40, 41], for
example, enhanced neutrino reaction rate and removing accreting matter, and as well as approximate analytic
solutions [42]. Without enough simulations addressing the entire evolution of the supernova explosion from
collapse to neutron star formation and the accurate neutrino event prediction in terrestrial detectors, it is
difficult to compare theoretical simulations with real observations and to constrain model parameters. Longer
time supernova simulations of more than at least 10 s are therefore needed. Preferably, such simulations should
be performed using consistent methods from core collapse to explosion to suppress systematic uncertainties.
Further analysis tools that can directly compare theory and observation with those models are needed for
future detection. This thesis focuses on addressing these issues.

1.4 Outline of Thesis

This thesis addresses supernova physics from the perspective of both theory and observation, developing a
long time supernova simulation and then performing a supernova search at Super-Kamiokande using this
model.

Part II describes the theoretical background of the model. Chapter 2 describes theories related to su-
pernovae: neutrino theories, equation of state and general relativity. Next, Chapter 3 describes simulation
methods of a long time supernova. Chapter 4 shows results of the simulation such as hydrodynamics be-
haviors and neutrino emissions. This simulation reaches 20 s without artificial treatments and long time
neutrino emission is obtained. The long time supernova simulation is developed as part of an integrated
analysis framework. This framework aims to consistently addresses core collapse to detection on earth in
order to enable quick analysis in case of a real supernova detection. This chapter moreover shows predictions
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of supernova signals assuming a detection at Super-Kamiokande.
Part III explains an experimental search for distant supernovae at Super-Kamiokande using this model.

First, Chapter 5 describes the Super-Kamiokande detector and introduces “event cluster”, which means a
collection of events for a short time and is a signal of supernova bursts. Chapter 6 describes the detail
properties of event clusters and background phenomena for the supernova search. Chapter 7 describes
a fiducial volume expansion study of supernova analysis. Chapter 8 describes possible improvements to
methods and results of the search for distant supernovae at Super-Kamiokande.

Part IV explains the future prospects of studies in this thesis and summarizes this thesis. Chapter 9
describes improvement of the simulation in the future and the application of these studies for Hyper-
Kamiokande. Chapter 10 concludes this thesis.
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Chapter 2

Theoretical background

This chapter describes theories related to supernova mechanisms. All four forces of nature are involved in
supernova explosions. This chapter explains the three in the four forces: weak interaction, strong interaction
and gravity. The electromagnetic interaction is also important for supernovae. However this force has little
influence on neutrino emission and is not explicitly included in our simulation, which is described in chapter 3.

2.1 Weak interaction

First, this section introduces weak interaction in supernova explosions. Weak interaction is the most im-
portant force to understand neutrino emission from supernovae because neutrinos interact only through this
force. Normally neutrinos are regarded as free particles because they have small cross-sections with matter
on the order of 10−40cm2. In supernovae, matter density is too high to consider neutrinos as free particles
as discussed in §1.1. In addition, neutrino-neutrino interaction cannot be ignored.

2.1.1 Neutrino interaction

Neutrinos interact exchanging W± or Z0 bosons between other leptons or quarks. Quarks are in a bound
state in nuclei. The typical energy of supernova neutrinos is around 20 MeV. This energy implies a wavelength
of λν ∼ ε−1

ν ∼ 10 fm(εν/20 MeV)−1. This wavelength is much longer than the radii of nuclei and neutrinos
therefore react with the entire nucleus. A weak current, which describes the interaction, has to be an effective
current defined in nuclei. This makes weak interaction with nuclei complicated.

Emission and absorption on free nucleons:νe + n↔ p + e−, ν̄e + p↔ n + e+

This reaction on free nucleon is important for the neutrino heating mechanism in §1.1.6. This reaction is only
invoked with charged current, in which the charged boson W± is exchanged. Typical supernova neutrino
energy is lower than 100 MeV. Hence, it is impossible to create heavy leptons so only the electron type
neutrinos contribute to this reaction. The cross section of the reaction of νe and n is

σνen = 1.705× 10−44

(
1 + 3g2

A

4

)(
ενe

+ ∆

mec2

)2 [
1−

(
mec

2

ενe
+ ∆

)]1/2

WM , (2.1)

where ενe
is energy of neutrinos, c is the light speed, gA is the axial vector coupling constant and ∆ is the

mass difference between proton and neutron ∆ = mnc
2 −mpc

2, WM is the correction for weak magnetism
and recoil and is approximated as 1 + 1.1ενe/mn

[43]. Cross section of the reaction of ν̄e and p reads from
Ref. [44]

σνen = 1.705× 10−44

(
1 + 3g2

A

4

)(
ενe −∆

mec2

)2 [
1−

(
mec

2

ενe
−∆

)]1/2

WM . (2.2)
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The cross section of this reaction is proportional to the square of the neutrino energy so that higher
energy neutrino is more likely to react. It is higher by two order of magnitude than other reaction between
leptons. Thus, distribution to optical density for electron type neutrinos mainly stem from this reaction and
scattering on nucleons, which we see next.

Coherent scattering on nuclei:ν +A↔ ν +A

We consider coherent scattering on nuclei whose mass number is A. This process is a scattering process on
nucleons bound in nuclei and important in neutrino trapping 1.1.3. This is an elastic scattering; that is, the
initial and final state of nuclei is the same.

The effective weak current of nuclei is

J
(Z,A)
N0 = Cv0A+

1

2
Cv1(Z −N), (2.3)

where Z is nuclear number, N is the number of neutrons, Ca0 = 0 and Ca1 = ga. The reaction rate is
proportional to ∝ A2 This implies that the heavier nuclei, the larger this effect becomes.

Nuclear emission and absorption:νe + (A,Z)↔ (A,Z + 1) + e−,

Here, (A,Z) represents nuclei whose mass number is A and atomic number is Z. This reaction is the same
reaction as that on free nucleons except that nuclei are bound in the nucleus. In this reaction, we do not
consider anti electron neutrinos because there are few anti electron neutrinos in stars due to strong electron
degeneracy at the low temperature low when this reaction is important. During core collapse until neutrino
trapping there are few free nuclei. This reaction is important for the determination of the number of electron
per baryon Ye. The cross section is written as

σ =
1.705× 10−44

14
g2
ANp(Z)Nn(N)

(
ενe

+Q′

mec2

)2
[

1−
(
mec

2

ενe

)2
]1/2

Wblock, (2.4)

where Wblock = (1 − fe)e(µn−µp−Q′)/kBT , fe is the distribution function of electrons, µn and µp are the
chemical potentials of neutrons, protons and Q′ = µn − µp + 3MeV , Np(Z) = 0, Z − 20 and 8 for N <
20, 20 < N < 28 and N > 28, respectively and Nn(N) = 6, 40 − N and 0 for N < 34, 34 < N < 40 and
N > 40, respectively [44].

Scattering on electron and positron:ν + e± ↔ ν + e±, ν̄ + e± ↔ ν̄ + e±,

So far we have considered reaction on baryons. Here, we consider leptonic reaction. Electron and positron
are the most abundant leptons in supernovae. This interaction invoke for all flavor neutrinos through neutral
current, in which the neutral boson Z0 is exchanged. The electron mass is 0.511 MeV and energy transfer
to outgoing particles. This reaction rate is smaller by an order of magnitude or more reaction on nuclei and
in addition proportion to only the first power of neutrino energy. Thus, this reaction has little influence on
higher energy neutrinos. However, this reaction effectively changes neutrino energy while the energy transfer
to nuclei is negligible. This process brings neutrinos closer to thermal equilibrium

Pair creation and annihilation from an electron and a positron:e− + e+ ↔ ν + ν̄

This reaction produces mu and tau type (anti) neutrinos, which are not created through charged current in
supernovae. Considering the Feynman diagram, this reaction just reverses the input channels of neutrino-
lepton scattering. The reaction rate is the almost same as that of scattering.
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Nucleon-nucleon bremsstrahlung:N +N ↔ N +N + ν + ν̄

This reaction is the process that two nucleons scattering creates or annihilates a pair of neutrinos due to a
neutral current between nucleons. One nucleon can not meet the conservation laws of energy and momentum
at the same. Two nucleons are thus needed to invoke this reaction. We need the nuclear force, whose coupling
constant is too strong to be perturbatively expanded. In general, calculation of the theory is difficult and
results based on pion exchange theories are used in supernova simulations [44]. Neutrinos of all flavors are
created in equal amounts by this reaction. This reaction is important especially in the central cores, where
there are few positrons due to strong electron degeneracy.

2.1.2 Neutrino transport

In supernovae neutrino interaction can not be ignored and neutrino can be no longer considered as free par-
ticles. Neutrinos and matter coupling is important for supernova mechanisms as described so far. Neutrinos
in a supernova are described using the Boltzmann equation to calculate from a fully thermalized state until
they escape the star and are free.

We assume that neutrinos are mass-less particles, that is pµp
µ = m2

ν ≈ 0, where pµ is the four momentum
vector of neutrino and mν is mass of neutrino and c = 1. In a vacuum, neutrino trajectories must be expressed
via the geodesic equation,

dpµ

dλ
= −Γµρσp

ρpσ, (2.5)

where λ is the affine parameter. Here we set the distribution of neutrinos as f(x, p; t). The total differential
of f is

df =
∂f

∂t
dt+

∂f

∂xi
dxi +

∂f

∂pi
dpi, (2.6)

Divided by λ we get
df

dλ
= pµ

∂fν(x, p)

∂xµ
+
dpi

dλ

∂fν(x, p)

∂pi
, (2.7)

where pµ = dxµ/dλ.
Supposing particles collide each other in a short time, we can also write the differential of f(x, p) using a

collision term as follows,
df

dλ
=

(
δfν(x, p)

δλ

)
C

. (2.8)

The Boltzmann equation is

pµ
∂fν(x, p)

∂xµ
+
dpi

dλ

∂fν(x, p)

∂pi
=

(
δfν(x, p)

δλ

)
C

. (2.9)

The Boltzmann equation has 7 degrees of freedom (one for time and six for the phase space). Solving Boltz-
mann equation requires expensive computational resources. Hence normally we approximate the equation to
simulate supernovae. In our simulation, we approximate the Boltzmann equation using the moment method
called M1 scheme, which is described in §3.3.6.

2.2 Strong interaction

The density of PNSs exceeds the density of nuclei. The PNSs support their gravity with nuclear force. Nuclear
force microscopically occurs from exchanging gluons and is described through quantum chromodynamics
(QCD). QCD calculations from first principles, however, are however too expensive to solve many nuclei
problems. In supernova simulations, approximated nuclear force theories are employed. Normally an equation
of state (EoS) of nuclear matter is calculated and summarized as a table called EoS table in advance. Generally
speaking, a stiff EoS can support heavier mass while a soft EoS make it easier for supernovae to explode.
Neutrino properties such as average energies and the numbers would reflect the difference among EoSs.
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2.2.1 Relativistic mean Field theory

Our simulation employs an EoS table based on the relativistic mean field theory [32]. The Lagrangian reads,

LRMF =ψ̄
[
iγµ∂µ −M − gσσ − gωγµωµ − gσγµτρaµ

]
ψ (2.10)

+
1

2
∂µσ∂

µσ +
1

2
m2
σσ

2 − 1

3
g2σ

3 − 1

4
g3σ

4

− 1

4
Wµν
µν +

1

2
m2
ωωµω

µ +
1

4
c3 (ωµω

µ)
2

− 1

4
RaµνR

aµν +
1

2
m2
ρρ
a
µρ
aµ,

where

Wµν = ∂µων − ∂νωµ, (2.11)

Raµν = ∂µρ
a
ν − ∂νρaµ + gρε

abcρbµρ
c
ν , (2.12)

ψ, σ, ω, ρ are a nucleon, a meson whose isospin and spin are 0, a meson whose isospin is 0 and whose spin
is 1, a meson whose isospin and spin are 1, respectively. M is the mass of nucleons, which is 938 MeV
and mσ,mω,mρ are the mass of each mesons. The interaction between nucleon and meson which generates
nuclear force is the Yukawa interaction and self interaction of the σ and ρ meson is incorporated as the
polynomial of the third and fourth degrees. The parameters of interaction strength, gσ, gω, gρ, g2, g3, c3 and
the masses of mesons are determined so that they reproduce not only the amount of uniform nuclear matter
at the saturation density but also experimental values in systems of finite nuclei. The mesons in Eq. 2.11 do
not represent real mesons in fact. They just provide nuclear force in phenomenology.

The mean field theory in the system is formulated as follows. First, the equations of nucleons and mesons
are

(iγµ∂µ −M − gσσµ − gσγµτaρaµ)ψ = 0, (2.13)

∂ν∂
νσm2σσ = −gσψ̄ψ − g2σ − g3σ

3, (2.14)

∂νW
µν +m2

ωω
µ = gωψ̄γ

µψ − c3(ωνω
ν)ωµ, (2.15)

∂νR
aµν +m2

ρρ
aµ = gρψ̄τaγ

µψ + gρε
abcρbνR

cνµ. (2.16)

Here, we think of mesons not as real particles but as virtual particles which mediate nuclear force and
approximate it with the classical field. We approximate equations from Eq.2.14 to Eq.2.16 with,

∂ν∂
νσ0 +m2

σσ0 = −gσ〈ψ̄ψ〉 − g2σ
2
0 − g3σ

3
0 , (2.17)

∂νW
νµ
0 +m2

ωω
µ
0 = gω〈ψγµψ〉 − c3(ω0νω

ν
0 )ωµ0 , (2.18)

∂νR
aνµ
0 +m2ρρaµ0 = gρ〈ψτaγµψ〉+ gρρ

b
0νR

cνµ
0 , (2.19)

where 〈A〉 = A0 represents the average of A. In isotropic and static systems space components of vectors are
always 0. The isopsin operator has non-zero values for the component of a = 3. Hence,

m2
σσ0 = −gσ〈ψ̄ψ〉 − g2σ0σ

2
0 − g3σ

3
0 , (2.20)

m2
ωω0 = gω〈ψγ0ψ〉 − c3ω3

0 , (2.21)

m2
ρρ

3
0 = gρ〈ψ̄τ3γ0ψ〉, (2.22)

where ω0 = 〈ω0〉, ρ0 = 〈ρ30〉. From Eq. 2.20 to Eq. 2.22, the expected values of meson fields are determined
with self interaction and nucleon-nucleon interaction.

On the other hand, we assume nucleons are a quantum field and they interact with a classical meson field.
In the isotropic and static system above, the momentum representation of Equation 2.13 is

(γµpµ −M − gσσ0 −ω γ0ω0 − gργ0τ3ρ0)ψ̃(p) = (γµp∗µ −M∗)ψ̃(p) = 0, (2.23)

M∗ = M + gσσ0, (2.24)

p∗µ = (p0 − gωω0 − gρτ3ρ0,p). (2.25)
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It is similar to the equation of motion of free field and indicates that the interaction with the meson field
emerges only as effect which shifts mass and energy of nucleons. The former gives the effective mass for this
model of nucleons in matter. The average of nucleons, which is needed for Eqs. 2.20, 2.21 and 2.22, can be
calculated from Eq.2.23 and the self-consistency is clear. In fact, mean fields of both nucleons and mesons
can consistently determine each other because the dispersion relation of nucleons depends on the mean field
of mesons and the field of mesons also depends on the expected value of nucleons. Given a temperature and
a density, we solve these equations and get the internal energy as the sum of the distribution of nucleons and
the meson fields as follows,

ε =
∑
t

1

π2

∫ ∞
0

dpp2
√
p2 +M∗2ft(k) + gωω0(np + nn) + gρρ0(np − nn) (2.26)

+
1

2
m2
σσ

2
0 +

1

3
g2σ

3σ3
0 +

1

4
g3σ

4
0 −

1

2
m2
ωω

2
0 +

1

4
c3ω

4
0 −

1

2
m2
ρρ

2
0.

Here, f(t) is the distribution function of nucleons and given as

ft(p) =
1

1 + exp [(
√
p2 +M∗2 − νt)/kBT ]

, (2.27)

where νt = µt − gωω0 − gρτ3ρ0. In these equations the contribution of nucleons is evaluated as the internal
energy of the free fermions which have dispersion relation shifted in matter. From these equations, we
generally obtain entropy from

s = −kB

∑
i

[fFD(ei) ln fFD(ei) + (1− fFD(ei)) ln(1− fFD(ei))], (2.28)

where fFD means the Fermi-Dirac function. The Helmfoltz free energy is

fH = ε− Ts. (2.29)

Once we obtain the free energy, we can calculate all of the thermodynamics variables.

2.3 General relativity

Supernovae are such a strong gravity environment that we must calculate their gravity considering the general
relativity to describe the motion of matter. In addition neutrinos have redshifts. The general relativity is
a non-linear theory. Thus, incorporation of this theory makes simulations analytically unsolvable in most
cases. However, in the case of spherical symmetry, we can analytically solve, which is the simplest simulation
of supernovae.

2.3.1 Spherically-symmetric solution

We designate a covariant vector as Aµ and a contravariant vector as Aµ and define a metric as gµν . The
transformation law between a covariant vector and a contravariant vector is

Aµ = gµνA
ν , (2.30)

Aµ = gµνAν , (2.31)

where the relation of gµν and gµν is
gµλgλν = δµν . (2.32)

The Christoffel symbol is

Γµν
σ =

1

2
gσρ{gρµ,ν + gρν,µ − gµν,ρ} (2.33)
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,where commas represents the partial derivative. The Riemann curvature tensor is

Rρσµν =
∂Γρσν
∂xµ

−
∂Γρσµ
∂xν

+ ΓρλµΓλσν − ΓρλνΓλσµ, (2.34)

and the Ricci tensor is
Rµν = Rρµνρ. (2.35)

The Einstein equation is

Rµν −
1

2
gµνR = 8πTµν , (2.36)

where R is the scalar curvature R = gµνRµν , Tµν is the energy-stress tensor and now we set C = G = 1. The
energy-stress tensor for the ideal fluid is

Tµν = (P + ε)uµuν + Pgµν , (2.37)

where P is the fluid pressure, ε is the energy of the matter and uµ is the four-velocity of the fluid.
We consider the solution of the Einstein equation 2.36 in the spherical symmetry. Using the polar

coordinate (r, θ, ϕ) the general formula of line elements is

ds2 = e2φdt2 + 2adrdt− eλdr2 −R2(dθ2 + sin2 θdϕ2), (2.38)

where φ, a, λ,R are functions as r and t. A proper coordinate transformation makes Eq. 2.38 easier. For
example, if we introduce the new time coordinate t′ which is represented with

dt′ = η(adr + e2φdt), (2.39)

we can transform the first 2 terms in Eq. 2.38,

(e2φ + 2adr)dt = (
dt′

η
+ adr)(

dt′

η
− adr)e−2φ. (2.40)

We can reduce the term of dt′dr. Finally, we get the new formula of the line element

ds2 = e2φdt2 − eλdr2 −R2(dθ2 + sin2 θdϕ), (2.41)

where, we regarded t′ as new t and φ, λ,R are new functions as t and r.
We calculate the Einstein equation Eq. 2.36,

8πT0
0 = e−λ

{
2
R′′

R
+

(
R′

R

)2

− R′

R
λ′

}
− e−2φ

λ̇ ṘR +

(
Ṙ

R

)2
− 1

R2
, (2.42)

8πT0
1 = 0 = 2e−λ

{
− Ṙ

′

R
+
λ̇

2

R′

R
+ φ′

Ṙ

R

}
, (2.43)

8πT1
1 = e−λ

{(
R′

R

)2

+ 2

(
R′

R

)
φ′

}
− e−2φ


(
Ṙ

R

)2

+ 2
R̈

R
− 2

Ṙ

R
φ̇

− 1

R2
, (2.44)

8πT2
2 = e−λ

{
φ′′ + φ′2 + φ′

(
R′

R
− λ′

2

)
+
R′′

R
− λ′

2

R′

R

}
(2.45)

+ e−2φ

{
1

2
λ̇φ+ φ̇

Ṙ

R
− λ̇

2

Ṙ

R
− λ̈

2
− λ̇2

4
− R̈

R

}
= 8πT3

3,

where dots represent time derivative and primes represent radial derivative. Other components than the
above are zero.
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We consider the static solution in the vacuum. that is Tµν = 0.

0 = e−λ
{

1

r2
− λ′

r

}
− 1

r2
, (2.46)

0 = e−λ
{

1

r2
+ 2

φ′

r

}
− 1

r2
, (2.47)

0 = e−λ
{
φ′′ + φ′2 + φ′

(
1

r
− λ′

2

)
− λ′

2r

}
(2.48)

Here, we consider Eq. 2.47-Eq. 2.46 and we get

2φ′ + λ′ = 0. (2.49)

At r →∞, the spacetime gets closer to a plane. Thus, the integration constant when integrating Eq. 2.49 is
0 and we get

2φ+ λ = 0. (2.50)

If we integrate Eq. 2.46, we get

e−λ = 1− 2m

r
= e2φ, (2.51)

where m is the integration constant and it corresponds to mass. This solution meets Eq 2.48.
From discussion above, the spherically symmetric spacetime is

ds2 =

(
1− 2m

r

)
dt2 − dr2

(1− (2m/r))
− r2(dθ2 + sin2 θdϕ). (2.52)

This is known as the Schwarzschild solution. The star cannot be described via the Schwarzschild solution.
However in spherical symmetry the metric of the outer vacuum is definitely the Schwarzschild solution what-
ever the inner mass distribution. Indeed, the metric in our simulation in §3.2.3 connects to the Schwarzschild
solution outside the calculation region.
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Part II

Supernova simulation
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Chapter 3

Long time simulation

This chapter describes a long time simulation of a supernova and an integrated analysis framework. Our
simulation reaches out to 20 seconds and predicts neutrino spectra of all flavors. The integrated analysis
framework consists of a detector simulator and a quick analysis tool of supernova neutrino signals. The final
goal is to bridge between the theory and observation of supernova and to enable quick analysis if a supernova
is detected.

3.1 Purpose

As described in §1.3.2, there is a gap between the theory and observation of supernova. The purpose of
the development of the long time simulation and the analysis framework is to solve this problem. Some
recent supernova studies try to predict neutrino signals in detectors on earth [45, 46, 47, 41]. This thesis also
introduces a framework for supernova-neutrino analysis as shown in Figure 3.1. This framework is composed
of a supernova simulator, a detector simulator and a supernova analyzer. The long time simulator is a crucial
part of this framework to provide the neutrino spectra from supernovae over long time scales. This simulator
addresses neutrino emission covering the core-collapse, the bounce, the explosion and the proto-neutron star
cooling stages. The detector simulator provides mock samples corresponding to detected neutrino events from
the output of the supernova simulator. The analyzer provides methods to compare the mock samples and the
real observational data to rapidly analyze the properties of a supernova using the results from the supernova
and detector simulators. The purpose of this framework is to connect the theoretical simulations of the stellar
collapse and explosion with the observation of neutrino events at terrestrial detectors. Ultimately, the final
goal of this study is to bridge the gap from the simulation to the observation so that anyone can analyze
a supernova burst in a systematic manner and to eventually reveal supernova mechanisms using supernova
neutrino events.

The first step of the framework development is the creation of a supernova simulator that calculates
long-time simulations of over 20 s and the next step is to develop a detector simulator that generates mock
samples by Monte-Carlo simulation from the output of the supernova simulator. This frameworks also provide
the supernova analyzer to make a quick analysis of a real supernova neutrino burst and to find connections
between the observation and theory using the evolution of the number of events and their energy as a function
of time. There is the previous study to try to estimate neutrino spectra [47] from neutrino events. This thesis
discusses statistical quantities such as the average and variance of the number of events and energy, which is
able to provide robust information in the case of a distant supernova that induces only a few interactions in
a detector.

This thesis focuses on one model with some discussion of similar models with different progenitor masses.
However in the future additional progenitors will be simulated in various situations including black hole
formation and these results will be summarized as a database. If a supernova burst is detected with neutrinos,
it will be possible to estimate how the supernova exploded and what object the supernova made from the
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Figure 3.1: Schematic diagram of the integrated framework.

database.

3.2 Supernova simulation

3.2.1 GR1D

This study employs GR1D [48, 49] for hydrodynamic simulations, which implements general relativistic
hydrodynamics equations and multi-energy neutrino radiation transport equations in a spherically symmetric
geometry.1 Neutrino transport is calculated following the truncated momentum formalism of Ref. [50].

Recent supernova studies revealed that multi-dimensional effects such as the standing accretion-shock
instability [26, 27], convection [28] and rotation [29] are also essential to supernova explosion and can in-
fluence neutrino signals. However this simulation does not consider multi-dimensional effects because such
simulations are too computationally expensive to follow over long times and the multi-dimensional effects
have little influence on neutrino predictions in the case of a light progenitor of around 9.0 M� [26]. Note
that there are methods that approximately implement multi-dimensional effects into spherical symmetric
calculations [46, 51]. Implementing them in our simulation to address multi-dimensional effects is a future
work.

3.2.2 Progenitor and EoS

This simulation employs the nuclear equation of state based on the density-dependent relativistic mean-field
(DD2) model [8] (see §2.2.1 for the detail of relativistic mean-field) for the detail. The pressure of the DD2
is shown in Figure 3.2. Neutrino interactions are calculated from a numerical table made with NuLib2 [49]
in advance.

This simulation calculates a 9.6 M� zero-metallicity progenitor provided by A. Heger (2016, private
communication, called ”z9.6”), which has been used in previous works and found to explode even assuming
spherical symmetry [52, 53]. This permits us to follow a long-time simulation from the initial core-collapse
through the PNS cooling without incorporating other phenomenological modeling.

1The code is publicly available at https://www.GR1Dcode.org.
2The code is publicly available at https://www.nulib.org.
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Figure 3.2: The curve of pressure of DD2. The horizontal axis is the number density of baryons. The black
solid line shows DD2. From Ref. [8]

3.2.3 Metric

GR1D follows formulas which formulate the 3 + 1 GR curvature and hydrodynamics in radial-gauge, polar-
slicing (RGPS) coordinate. The metric is

gµν =


−α2

X2

r2

r2 sinθ

 . (3.1)

The invariant line element is

ds2 = gµνdx
µdxν = −α(r, t)2dt2 +X(r, t)2dr2 + r2dΩ2, (3.2)

where α and X can be written as functions of a metric potential, Φ(r, t), and the enclosed gravitational mass,
Mgrav(r, t) = m(r, t),

α(r, t) = exp [Φ(r, t)], (3.3)

X(r, t) =

(
1− 2m(r, t)

r

)−1/2

. (3.4)

We assume the ideal fluid for which the fluid stress-energy tensor is

Tµν = ρhuµuν + Pgµν , (3.5)

and the matter current density is

Jµ = ρuµ, (3.6)

where ρ is the baryonic density, P is the fluid pressure and h is the specific enthalpy which is 1 + ε + P/ρ
with ε being the specific internal energy. uµ is the four-velocity and equals to [W/α,Wvr, 0, 0], where
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W = (1 − v2)−1/2 is the Lorentz factor and v = Xvr. The gravitational mass needed for X(r, t) is derived
from the Hamiltonian constraint equation and

m(r, t) = 4π

∫ r

0

(ρhW 2 − P + τνµ )r′2dr′, (3.7)

where τνµ is the contribution to the gravitational mass from the energy and pressure of trapped neutrinos.
The metric potential Φ(r, t) is determined via the momentum constraint and is

Φ(r, t) =

∫ r

0

X2

[
m(r′, t)

r′2
+ 4π′ + P + τνΦ

]
dr′ + Φ0, (3.8)

where τνΦ considers the effects of trapped neutrinos being analogous to Eq. 3.7. The constant Φ0 is determined
by the constraint that the solution must match to the Schwarzschild metric 2.52 at the star surface (r = R?).
That is

Φ(R?, t) = ln[α(R?, t)] =
1

2
ln

[
1− 2m(R?, t)

R?

]
. (3.9)

GR1D perform the integrals in Eq. 3.7 and Eq. 3.8 with standard second-order methods and obtain values
at cell centers as well as cell interfaces.

3.2.4 Hydrodynamics

GR1D’s hydrodynamics evolution equations are

∂t~U +
1

r2

[
αr2

X
~F

]
= ~S, (3.10)

where ~U is the set of conserved variables, ~F is their flux vector and ~S is the vector of gravitational, geometric
and neutrino-matter interaction sources and sinks. In spherical symmetry, they are ~U = [D,DYe, S

r, τ ]. The
conserved variables are functions of the primitive ρ, Ye, ε, v and P and are given by

D = αXJ t = XρW, (3.11)

DYe = αXYeJ
t = XρWYe, (3.12)

Sr = αXT tr = ρhW 2v, (3.13)

τ = α2T tr −D = ρhW 2 − P −D, (3.14)

where Ye is the electron fraction or the ratio of the number of electrons to baryons. The flux ~F is ~F =
[Dv,DYe, S

rv + P, Sr −Dv] and the source and sink ~S is given by

~S =

[
0, RvYe

, (Sr − τ −D)αX
(

8πrP +
m

r2

)
+ αPX

m

r2
+

2αP

Xr
+Qv,ESr +Qv,MSr , (3.15)

Qv,Eτ +Qv,Mτ
]
,

where RvYe
, Qv,ESr , Q

v,M
Sr , Qv,Eτ and Qv,Mτ are the source and sink terms associated with neutrinos. We discuss

them in §3.3.6.
GR1D uses a semi-discrete approach. GR1D first discretizes Eq. 3.10 in space, then applies the method

of lines (MoL) [54] and perform the time integral of the conserved variables via the standard second- or
third-order Runge-Kutta methods with changeable Courant factors. Properly tuning the Courant factor is
important for a stable long time simulation.

The spatial discretization follows a finite-volume approach and all GR1D’s variables are defined at cell
centers i and reconstructed at cell interfaces with interpolation. Inter-cell fluxes are also computed at the
cell interface. This interpolation must be monotonic to ensure stability. GR1D use the nominally third-order
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piecewise-parabolic method (PPM) [55] to interpolate the primitive variables in smooth parts of the flow and
set up the conserved variables at the cell interfaces. GR1D also implements the piecewise-linear TVD [56],
which is exclusively used in the three to five cells to avoid oscillations near the origin.

Once the variables have been reconstructed at the cell interfaces, GR1D evaluates the physical interface
fluxes ~Fi+1/2 with the HLLE Riemann solution discretized as follows

Flux termi =
1

r2
i∆ri

[
αi+1/2r

2
i+1/2

Xi+1/2

~Fi+1/2 −
αi−1/2r

2
i−1/2

Xi−1/2

~Fi−1/2

]
. (3.16)

Gravitational, geometrical and neutrino matter interaction terms are not taken into account in the flux
computation and are coupled into the MoL integration.

After updating the conserved variables D,DYe, S
r and τ , the primitive variables ρ, Ye, v, ε and P (ρ, ε, Ye)

are computed, which are needed for the next timestep. GR1D reconstructs these primitive variables with an
iterative approach and make an initial guess using Pold from the previous timestep:

v =
Sr

τ +D + Pold
, (3.17)

ρ =
D

XW
, (3.18)

ε =
τ +D + Pold(1−W 2)

ρW 2
− 1, (3.19)

where X can be calculated from the conserved variables as ρhW 2 − P = τ + D. GR1D then calls the EOS
to obtain a new pressure and iterate this process using a Newton-Raphson method until convergence.

3.3 Neutrino transport in GR1D

GR1D adjusts the moment scheme to approximately solve the Boltzmann equation, which is formulated in
Refs. [50, 57].

3.3.1 Moment scheme

The moment scheme removes the angular dependence of the Boltzmann equation by expanding the neutrino
distribute function as series of moment. This reduces the degrees of freedom 4 to 3 in spherical symmetry.

Here, we consider the non-relativistic Boltzmann equation for simply.

∂fν
∂t

+ ~n · ∇fν =

[
∂fν
∂t

]
c

, (3.20)

where fν is the neutrino distribution function in the six dimensional phase space, ~n is the eigen vector along
the direction of motion of neutrinos. We integral Eq. 3.20 multiplied by the neutrino energy ε over the all
solid angle and obtain,

∂Eν
∂t

+∇ · ~F = −Qν , (3.21)

where E is the energy density of neutrinos, ~F is the flux and Qν is the variation with the neutrino interactions.
This formula is called the zeroth moment formula. Here, the zeroth moment is defined as

F iν(~x, t) =

∫
d3p

(2π)3
niεfν(~x, ~p, t). (3.22)

To calculate the flux, we compute the first moment equation multiplying Eq. 3.21 by ε and nj and get,

∂ ~Fν
∂t

+∇ · Pν = ~Gν . (3.23)
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Here, ~Gν is variation of momentum of neutrinos to solve the equation, we need the pressure tensor,

P ijν (~x, t) =

∫
d3p

(2π)3
ninjεfν(~x, ~p, t). (3.24)

In this way solving the moment of a given order requires the next order moment. The moment expansion
continues to the infinity order. We hence must stop the expansion somewhere and need to approximate the
last moment via a closure relation. GR1D adopts the analytic closure in §3.3.3.

3.3.2 Moment Evolution Equations

The zeroth and first moment equations in the lab-frame which GR1D solves are,

∂t[E] +
1

r2
[
α

X2
Fr] + ∂ε[ε(Rt +Ot)] = Gt +Gt, (3.25)

∂t[Fr] +
1

r2
[
α

X2
Prr] + ∂ε[ε(Rr +Or)] = Gr +Gr, (3.26)

where E is the neutrino energy density, Fr is the neutrino momentum density, Prr is the next highest
moment, Rα and Oα stem from gravitational redshifting and observer motions respectively and Gα and Cα
are source terms due to geometric and matter interactions. Here, the units of E and Rr are erg cm−3 sr−1

and erg cm−2 s−1 sr−1 MeV−1, respectively.
GR1D uses a simple first-order implicit and explicit method to evolve the neutrino moments. GR1D

explicitly treats E, Fr, Prr, spatial flux terms ∂[αr2X−2Fr] and ∂[αr2X−2Prr] and the energy flux terms
∂ε[ε(Rt +Ot)] and ∂ε[ε(Rr +Or)]. The discretized equations in terms of time are

E(n+1) − E(n)

∆t
= − 1

r2
[
α

X2
F (n)
r ]− ∂ε[ε(R(n)

t +O
(n)
t )] +G

(n+1)
t +G

(n+1)
t , (3.27)

F
(n+1)
r − F (n)

r

∆t
= − 1

r2
[
α

X2
P (n)
rr ]− ∂ε[ε(R(n)

r +O(n)
r )] +G(n+1)

r +G(n+1)
r , (3.28)

where E(n) and F
(n)
r are the energy density and momentum density at the n-th step.

3.3.3 Solving Higher Moments

The determination of higher moments is easier in the fluid frame than lab frame. In the fluid frame, contribu-
tions to the neutrino momentum from background motions of the fluid are negligible. GR1D uses the neutrino
stress energy tensor Tµν to determine the fluid frame moments. The set of fluid frame moments (J ,Hµ,Kµν)
constitutes Tµν when it is described in a frame of an observer moving with a velocity uµ = [W/α,Wvr, 0, 0].
That is,

J = uµuνTµν ,

Hµ = −uνhνρT νρ,
Kµν = hµρh

ν
σT

ρσ, (3.29)

where hαβ = gαβ + uαuβ is the projection operator. GR1D makes the lab-frame moments with a similar
projection of Tµν into the frame of an observer who is at rest in the lab-frame. GR1D chooses βi = 0 as
a gauge for completeness. Under the gauge, the components of nα in the lab frame are (1/α, 0, 0, 0) The
lab-frame moments read

E = nµnνTµν ,

Fµ = −nνγνρT νρ,
Pµν = γµρ γ

ν
σT

ρσ, (3.30)
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where γαβ is the spatial part of the metric gαβ . The neutrino stress energy tensor can be obtained from the
zeroth, first and second moments regardless of frames. In the lab-frame,

Tµν = Enµnν + Fµnν + F νnµ + Pµν , (3.31)

and in the fluid frame,
Tµν = J uµuν +Hµuν +Hνuµ +Kµν . (3.32)

The procedure to determine the higher moments generally is:

1. Employ the lab-frame energy and momentum density, E and Fr and P at the last step to calculate the
neutrino stress energy tensor for a particular energy group from Eq. 3.31,

2. Determine the fluid frame moments from Eq 3.29,

3. Employ the analytic closure next to calculate the fluid-frame second moment from the zeroth and first
moments Kµν(J,Hµ),

4. Calculate the stress energy tensor from Eq. 3.32 using the fluid frame moments,

5. Obtain the projection of the second moment out the lab-frame from Eq. 3.30.

Here, since the lab frame second moment at the last step Prr is used as an input, GR1D iterate the process
until reaching convergence on the lab-frame second moment.

The analytic closure that GR1D adopts is,

Kµν =
J
3
hµν + a(J ,H2)

(
HµHν − H

2

3
hµν
)
, (3.33)

where a(J ,H2) = J /H2 × (3χ− 1)/2 with H2 = HµHµ. We can rewrite the more common form,

Kµν =
3(1− χ)

2
Kµνthick +

3χ− 1

2
Kµνthin, (3.34)

where

Kµνthick =
J
3
hµν , (3.35)

is the analytic second moment based on the diffusion limit, where the radiation is fully isotropic, and

Kµνthin = J H
µ

H2
, (3.36)

is the free streaming limit. Here, χ in these equations is an interpolation factor, which closes to 1/3 (leading
to Kµν = Kµνthick) in the optically thick limit and to 1 (leading to Kµν = Kµνthin) in the free streaming limit.
GR1D follows the Minerbo closure in Refs. [58, 59]

Lµνρ =
3(1− χ)

2
Lµνρthick +

3χ− 1

2
Lµνρthin, (3.37)

where

Lµνρthick =
1

5
(Hµhµρ +Hρhµν +Hµhµρ), (3.38)

and

µνρthick =
HµHνHρ

H2
. (3.39)

The third moment is

Wrrr = Lrrr + 3

(
Wr

X

)
Krr + 3

(
Wr

X

)2

Hr + 3

(
Wr

X

)3

J , (3.40)

Wrφ
φ = Lrφφ +

(
Wv

X

)
φφ, (3.41)
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3.3.4 Coupling Energy Groups

The components of the energy flux terms Rα and Oα are described as

Rt = αW

[
(
Zv
X
− Yr)∂rφ−

X iiv
2X

∂rgii + X rrKrr

]
, (3.42)

Ot = α

[
Z
α
∂tW + Yr∂rW −

Yr
α
∂t
Wv

X
−X rr ∂r

Wv

X

]
, (3.43)

and

Rr = αW

[
(
Yrv
X
−X rr )∂rφ−

Wr
iiv

2X
∂rgii +Wrr

r Krr

]
, (3.44)

Or = α

[
Yr
α
∂tW + X rr ∂rW −

Xrr
α
∂t
Wv

X
−Wr

rr∂r
Wv

X

]
, (3.45)

where

WZ = E +
vFr
X

+
v2Prr
X2

+
Wv3

X3
Wrrr, (3.46)

WYr =
Fr
X2

+
vPrr
X3

+
Wv2

X3
Wrrr, (3.47)

WX rr =
Prr
X4

+
Wv

X5
Wrrr, (3.48)

WX θθ =
Pθ

θ

r2
+
Wv

Xr2
Wθ
rθ, (3.49)

WX φφ =
Pφ

φ

r2
+
Wv

Xr2
Wrφ

φ, (3.50)

and Krr = −XẊ/α is the extrinsic curvature. GR1D’s finite differencing is

v̇ =
v(n+a) − v(n)

t(n+1) − t(n)
, (3.51)

dvi
dr

=
vi+1 − vi−1

ri+1 − ri−1
. (3.52)

GR1D follow the number-conserving scheme in Ref. [60] for determination of the inter-group fluxes. This
method calculates the momentum space fluxes from the equations here and reconstructs the flux at the
energy group interface by giving weights to the left and right of the interface. The weights are determined
to conserve the number of neutrinos.

3.3.5 Explicit Update of Flux

GR1D explicitly solves the flux terms in Eq. 3.25 and employs the standard hyperbolic methods [61]: TVD (for
the collapse phase) and PPM (after the density has reached 1012g · cm−3). GR1D estimates the characteristic
speeds needed in the Riemann solution using an interpolation between the optically thick limit and the free
streaming limit.

λmax/min =
3(χ− 1)

2
λ

max/min
thick +

3χ− 1

2
λ

max/min
thin , (3.53)

where χ is defined and computed in the closure calculation in §3.3.4.

λ
max/min
thick = max/min(αX

2W 2v ±
√

3

2W 2 + 1
, αXv), (3.54)
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and the second term is,

λ
max/min
thin = max/min(±αX). (3.55)

The inter-cell fluxes from the Riemann solution read,

F i+1/2,HLLE
r =

λmaxF i,Rr − λminF i+1,L
r + λmaxλmin(Ei+1,L − Ei,R)

λmax − λmin
, (3.56)

and

P i+1/2,HLLE
rr =

λmaxP i,Rrr − λminP i+1,L
rr + λmaxλmin(F i+1,L − F i,R)

λmax − λmin
, (3.57)

,where Ai,R/L mean the reconstructed moments to the right or left interface in grid i. In the optically thick
regions, the diffusive term is the Riemann solution is invalid because numerical noise dominates. In these
regions, GR1D approximately replaces the interface fluxes with asymptotic values. GR1D’s approximation
is

F i+1/2,asym
r =

4W 2vX

3
J − W

3κ̄X2

∂J
∂r

, (3.58)

where the first term means the flux due to flow of the fluid and the second term comes from diffusion. GR1D
estimates ∂J /∂r using a simple finite difference of energy density in the fluid frame. For the momentum flux
in optically thick regions. GR1D calculates a simple average of the neighboring cell’s second moment of the
asymptotic flux,

pi+1/2,asym
rr = (P irr + P i+1

rr )/2. (3.59)

GR1D interpolates between optically thick and thin regions using the Peclet number P̄e following Ref. [62],

a = tanh(1/P̄e), (3.60)

and the definition of the Peclet number is

P̄e =

√
(κis + κia)(κi+1

s + κi+1
a )(xi+1 − xi)W 3(1 + v)X2, (3.61)

where κs and κa are the scattering and absorption opacities, respectively. The extra W 3(1 + v)X2 factor
comes from the coefficients of the neutrino momentum sink term of Cr. Here, a approach 1 if the Peclet
number is small in the optically thin region and a is proportional to 1/P̄e if the Peclet number is large in the
optically thick region. As a result, the fluxes on the cell interfaces are

F i+1/2
r = a× F i+1/2,HLLE

r + (1− a)× F i+1/2,asym
r , (3.62)

and
P i+1/2
rr = a× F i+1/2,HLLE

rr + (1− a)× F i+1/2,asym
rr , (3.63)

The flux update terms in the evolution equations are

∂r[
αr2

X2
F (n)
r ] =

1

∆ri

{[
αr2

X2

]i+1/2

F i+1/2
r −

[
αr2

X2

]i−1/2

F i−1/2
r

}
(3.64)

∂r[
αr2

X2
P (n)
rr ] =

1

∆ri

{[
αr2

X2

]i+1/2

P i+1/2
rr −

[
αr2

X2

]i−1/2

P i−1/2
rr

}
. (3.65)

3.3.6 Neutrino interaction in GR1D

In GR1D the neutrino reactions are given by a numerical table that is computed in advance employing
NuLib [49]. Since the original table does not cover the whole thermodynamic range necessary for the
PNS cooling phase, this simulation employs an expanded table. It ranges ρ = 106−15.5 g cm−3 with 82
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logarithmically-spaced points, T = 0.05− 150 MeV with 65 logarithmically-spaced points, Ye = 0.015− 0.55
with 82 linearly-spaced points, and η = 0.1− 100 with 61 logarithmically-spaced points.

Neutrino interactions with matter are one of integral parts of the explosion’s evolution. This simulation
considers the emission and absorption reactions

νe + n↔ p+ e−, (3.66)

ν̄e + p↔ n+ e+, (3.67)

νe + (A,Z)↔ (A,Z + 1) + e−, (3.68)

where νe, ν̄e, p, n, e−, e+, and (A,Z) are electron-type neutrinos, electron-type anti-neutrinos, protons,
neutrons, electrons, positrons, and a nucleus with mass number A and atomic number Z, respectively. These
reactions are calculated based on Ref. [43] with weak-magnetism and recoil corrections from [63] taken into
account. Neutrino absorption on heavy nuclei also follows Ref.[43, 64].

Similarly the simulation considers elastic scattering via the following reactions

ν + α→ ν + α, (3.69)

νi + p→ νi + p, (3.70)

νi + n→ νi + n, (3.71)

ν + (A,Z)→ ν + (A,Z), (3.72)

where α is the helium nucleus, ν indicates that the reaction is insensitive to the neutrino flavor, and νi

indicates that the reaction depends on flavor. These are also based on Refs. [43, 64]. Inelastic scattering
giving as

νi + e− → ν′i + e−
′
, (3.73)

has been computed following [64].
This simulation considers thermal processes as defined below,

e− + e+ → νx + ν̄x, (3.74)

N +N → N +N + νi + ν̄i, (3.75)

which have been computed following Refs. [43, 64]. Note that electron-positron annihilation is considered
only for νx throughout the simulation, where νx refers to non-electron-type flavors. Including electron flavors
results in the simulation stopping prematurely around the bounce [49] and this reaction has little influence
on the late phase. Though the original GR1D includes nucleon-nucleon bremsstrahlung for νx only, it is
found that without including electron-type neutrinos the average energies of these flavors remain constant at
late times and luminosities for νe and ν̄e are lower than that of νx. However, their energies are expected to
decrease as time and luminosities are expected to converge to one another based on physical considerations
that neutrino energies should decrease as the PNS cools and that all flavor neutrinos are thermalized at
late times. Accordingly, this simulation considers the bremsstrahlung for all flavors to resolve this issue, see
§4.2.2.

3.4 Grid settings

During PNS cooling, the surface density gradient is extremely steep, decreasing from ∼ 1014 g cm−3 to ∼ 108

g cm−3 within 20 km (see the red line in Figure 3.3). The original grid settings of GR1D are optimized to
resolve the supernova shock evolution, which is not optimized for the PNS cooling phase. To conduct the
PNS cooling simulation we introduced new grids which can resolve the steep density gradient at the surface
of the PNS. Therefore this simulation employs fine grids to resolve this gradient. For this purpose GR1D
uses custom2, which sets the 30 innermost cells to have cell widths which decrease logarithmically from 1 km
to 0.1 km and sets the intermediate 78 cells to have a constant width (0.1 km) with an otherwise logarithmic
progression that extends up to 5000 km. The grid widths are shown as the blue line in Figure 3.3. There are
300 total grid points which are used throughout the simulation. From Figure 3.3 the finest resolution grid is
assigned along the steepest density gradient at the PNS surface.
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Figure 3.3: Grid width and density profile. The red line shows the density profile 3 s after the bounce and
the blue line shows the grid width.

3.5 GR1D Modifications

GR1D is available software for the simulation of core-collapse supernova explosions publicity which is opti-
mized to calculate the accretion phase, typically up to one second after the bounce. Since this thesis is also
interested in the PNS cooling phase, which happens later, the original GR1D has to be modified in two ways.

3.5.1 CFL parameter tuning

The first modification is an optimization of CFL parameters. This simulation also changes the CFL number
from the original setting of 0.5 to 0.25 starting 8 s after the bounce. Figure 3.4 shows a comparison of the
two parameters 0.5 and 0.25 and that the small CFL factor stabilize simulations.

3.5.2 Numerical table problem

The second modification is to address a numerical table problem. It is found that the long time calculation
causes some thermodynamic quantities such as the density, temperature, electron fraction, and η = µ/kBT ,
with µ being the chemical potential of electrons to go out of the bounds of GR1D’s numerical tables. To
avoid such overflows we modified and extended to cover a wider range of parameters. In addition, in the
modified GR1D we have chosen to fix any value that exceeds the limits of the new tables to their closest
extremum. Details are given in §3.3.6.

3.5.3 Regrid

This modification is not used for the main simulation result in this thesis but this function is important for
future work, in which many progenitors will be simulated. During PNS cooling stars shrinks small enough to
ignore outer grids and can be calculated with coarser grids. Hence, we can reduce the number of grid points
during a simulation. All variables which are defined at each grid must be interpolated to new grids. The
modified GR1D uses a linear interpolation as seen in Figure 3.5. Figure 3.5 shows density profiles before and
after regrid; the number of grids reduces from 300 to 200 grids and the maximum radius is decreased from
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Figure 3.4: Comparison of simulations whose CFL factor is 0.5 and CFL factor is 0.25 shortly before the
former simulation stops. The red jugged line is CFL factor of 0.5 and the blue smooth line is CFL factor of
0.25.

5, 000 km to 1, 500 km. The new grids can also resolve steep zones of the PNS surface as well as the old grids
even with two-thirds grids by reducing the number of grids in the flat zone.

3.6 Advantage

There are some long supernova simulations which concentrate on the late phase. However these simulations
incorporate artificial methods to induce the supernova explosion. For example, some simulations enhance
neutrino reaction rates in the early phase [65] or remove infalling matter [17]. These methods increase
systematic errors of simulation. For example, the masses of neutron stars change by around 10% and the
expected numbers of neutrino events vary by a factor of about 2 due to removing infalling material [41].
However, the simulation in this thesis leads to a unique neutron star mass and does not emply any artificial
methods. The simulation in this thesis employed the full general relativity, EoS and neutrino reaction
table based on microphysics and the approximate neutrino transport. The systematic errors stem from the
treatment of microphysics, treatment of multi-dimensional effects and the approximated neutrino transport.
The systematic errors from microphysics are common to all the recent simulations. There is no more precise
treatment of EoSs and neutrino reactions other than referring to tables during simulations. The errors from
treatment of multi-dimensional effects have no influence on light progenitors around 9M�, which can be
addressed with the simulator in this thesis [26]. However, systematic errors coming from the approximation
of the neutrino transport are at the level of a few percent compared to a full Boltzmann calculation [49].

49



105 106 107 108 109

Radius [cm]

104

106

108

1010

1012

1014

D
en

si
ty

 [g
/c

m
3 ]

Steep zone

Flat zone

All
Old grid
New grid

1.35 × 106 1.4 × 106 1.45 × 106 1.5 × 106 1.55 × 106

Radius [cm]

1011

1012

1013

D
en

si
ty

 [g
/c

m
3 ]

Steep zone
Old grid
New grid

107 2 × 107 3 × 107

Radius [cm]

103

104

D
en

si
ty

 [g
/c

m
3 ]

Flat zone
Old grid
New grid

Figure 3.5: Density profiles before and after regrid. The number of old grids is 300 and the number of new
grids is 200. The blue lines are old grids and the red lines are new grids. The top left shows the overall
density profiles, the top right shows the density profiles in “Steep zone” and the bottom right shows the
density profiles in “Flat zone”.
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Chapter 4

Simulation results

This chapter describes the results of the long time supernova simulation in 4.1. First, hydrodynamics prop-
erties in supernova from core collapse to explosion are described. Second, the time evolution of neutrino
emission is described in §4.2. Another purpose of this study in this thesis is also to predict neutrino signals
on earth and develop a method to analyze supernova neutrino events if real supernovae are observed. At
last, neutrino observations are discussed in §4.3 in the case of galactic supernovae.

4.1 Hydrodynamics properties

This section explains hydrodynamics properties related to supernovae: density, entropy, electron fraction and
temperature.

4.1.1 Shockwave and mass coordinate

The trajectories of several mass shells, which means the radius in which the same enclosed mass and the
shock wave are shown as red and black, respectively in Figure 4.1. The shock trajectory clearly represents a
successful shock propagation. In GR1D, the shock wave position is defined as the grid at which the velocity
is smallest. The left shows the success of supernova, which is 9.6M� in §3.2.2, and the right shows a failed
supernova, which is 9.7M� in §3.2.2. The innermost red line are the mass coordinate 1.20M�, while the
outermost thick line shows that of 1.37M�. Here the thick red lines are divided by 10−2M�. In order to
observe the mass shells out of the PNS in detail, thin red lines for 1.330M� to out to 1.374M� are displayed
in intervals of 10−3M�. From the beginning of the simulation the mass shells gradually shrink into the
center and then rapidly accelerate just before the core bounce. The initial central density of the progenitor is
equal to 109 g cm−3, and the core collapse continues until the central density is beyond the nuclear saturation
density ∼ 1014 g cm−3. The core bounce of the z9.6 progenitor occurs 0.254 s after the start of the simulation.
Figure 4.1 indicates that the z9.6 progenitor can successfully explode in this simulation. The mass shells
inside 1.36M� continue accreting onto the PNS surface, while the others outside are ejected to the surface
after the shock passes.

4.1.2 Explosion energy

The explosion energy is defined as

Eexp =

∫
εbind>0

εbinddV, (4.1)

where
εbind = α(ρ(c2 + ε+ P/ρ)W 2 − P )− ρWc2 (4.2)
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Figure 4.1: The shock wave (black) and time evolution of mass shells (red). The left shows the successful
supernova and the right shows a failed supernova. The thick and thin lines indicate mass shells ranging
from 1.20M� to 1.37M� at intervals of 10−2M� and from 1.330M� to 1.374M� at intervals of 10−3M�,
respectively on the left. The thick lines indicate mass shells ranging from 1.1M� to 1.32M� at intervals of
10−2M� on the right.

is the binding energy, α =
√
−g00 is the lapse function in §3.2.3, ρ represents the rest-mass density, ε represents

the specific internal energy, P represents the pressure, W represents the Lorentz factor, and dV represents
the three-volume element for the curved space-time metric. With this definition the explosion energy of this
calculation is shown in Figure 4.2 and finally reaches 4.2 × 1049 erg, which is far smaller than the typically
observed value of 1051 erg [66]. However, this value is consistent with that of other studies that employed
the same progenitor model [52, 53]. Optical observations of supernovae show that they have a rather broad
distribution of explosion energies, from ∼ 1050 erg to 1052 erg [67]. The explosion energy is simply determined
with the binding energy of progenitor layers near to the final remnant mass of the compact object so that
stars with small binding energies are thought to be candidates for weak explosions.

4.1.3 Density, entropy, electron fraction and temperature profiles

The time evolution of density, entropy, electron fraction and temperature at the center is shown in Figure 4.3.
The density before the bounce is almost flat and far lower than that after the bounce. At the moment of
the bounce the density suddenly jumps and exceed 3.0× 1014 g · cm−3, which is equal to or higher than the
density of nuclei. After the bounce the density gradually increases and reaches 4.9 × 1014 g · cm−3 at 20 s.
The entropy at the center jumps at the bounce and temporarily decreases to 9.0 kB/baryon, increases again,
peaks at around 10 s and decrease to 1.65 kB/baryon. The electron fraction Ye before bounce already shows
the excess of neutrons and fall down to 0.27 and continues falling to 0.12 at 20 s. The temperature jumps to
17 MeV, peaks at 40 MeV around 10 s and finally reach 37 MeV at 20 s.

Figure 4.4 shows the evolution of the density profiles. Before the bounce (blue dotted line), the maximum
density is 1010 g · cm−3. After the bounce, the maximum density reaches 1014 g · cm−3 and steeply goes down
beyond 106 cm from the center. At 10 s after the bounce (black solid line), the PNS star surface go down by
10 orders of magnitude at distances between 106 cm to 107 cm.

Figure 4.5 shows radial profiles of the entropy, Ye and the temperature at different times. Before the
bounce (blue dotted line), the entropy is low around 1.2 kB/baryon and is flat with respect to the mass
coordinates. The electron fraction at that time is high around 0.45 out to 1.3M� and slightly rises to 0.5
at 1.4M�. The temperature is almost flat around 1 MeV. At the time of the core bounce (orange dashed
line), the shock wave appears at the mass coordinate 0.6M� resulting in a sudden jump in entropy from
1.5 kB/baryon to 3.0 kB/baryon, while the entropy at external coordinates is nearly constant. The electron
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Figure 4.2: Time evolution of explosion energy.

fraction Ye is ∼ 0.3 out to the mass coordinate 0.6M� and goes up to 0.45 in the outer regions. The
temperature has a step structure, where the temperature is between 12 MeV and 16 MeV from 0M� to
0.6M� and around 2 MeV out 0.6M�. After the core bounce which is shown in green dash-dotted and red
dash-double-dotted lines, the entropy rises out to ∼ 0.8M�, becomes almost constant (at 100 ms) or falls (at
1 s) outside, and suddenly rises from ∼ 1.35M�. The electron fraction goes down with the mass coordinate
and is the minimum value at ∼ 1.35M�. The temperature gently increases out to 0.6M� and decreases. At
10 s after the core bounce, the entropy takes on an almost constant value of ∼ 2.5 kB/baryon and the electron
fraction is lower than 0.2. Both suddenly rise at ∼ 1.35M� again. The temperature monotonically decreases
from 40 MeV at the center.

4.1.4 Accretion mass and neutron star mass

Figure 4.6 shows accretion mass onto the PNS surface. The definition of the accretion rate is the amount of
mass which run across at the radius of 3× 107 cm per second and the definition of the accreted mass is the
time integral of the accretion rate. The accretion rate peaks a little before the bounce and falls to 0 after
the bounce. The accreted mass finally reaches 1.15M�. Figure 4.7 shows time evolution of the PNS baryon
mass. The mass converge to 1.36M�. The baryonic mass of the PNS remnant of this model is therefore
1.36M�.

4.2 Neutrino properties

This section shows the properties of neutrinos from our long time simulation: average energy, root-mean-
square (RMS) energy and luminosity. As described §3.3.6 nucleon bremsstrahlung is important in the late
phase for all flavors. There is a comparison of simulation that includes the reaction for all flavors and that
includes it only for non-electron-type neutrino νx in §4.2.2.
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Figure 4.3: Time evolution of density, entropy, electron fraction, and temperature at the center. The top left
is density, the top right is entropy, the bottom left is electron fraction and the bottom right is temperature.
The left side of each figure shows time from 0 to 300 ms measured from the bounce and the right side shows
after 300 ms.
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Figure 4.4: Radial profiles of the density. The horizontal axis is radius. The time in the legend is defined
relative to the core bounce: positive values mean after the bounce and the negative values mean before.

4.2.1 Neutrino energy and luminosity

The luminosity Lν , average energy 〈Eν〉, and the RMS energy
√
〈E2

ν〉 are shown in Figures 4.8, 4.9, and 4.10,
respectively. In this thesis, the definitions of these energies are

〈Eν〉 =

∫
E
dN

dE
dE∫

dN

dE
dE

, (4.3)

〈E2
ν〉 =

∫
E2 dN

dE
dE∫

dN

dE
dE

, (4.4)

where dN(E)/dE represents the neutrino number density per unit energy.
Figure 4.8 shows that the electron neutrino (νe) luminosity begins to increase at ∼ 20 ms before the core

bounce, and then drops by 0.4 × 1053 erg · s−1 around the bounce due to neutrino trapping in §1.1.3. Note
that are no neutrinos of other flavors before the core bounce since electrons are degenerate due to the lower
temperatures at this stage and the process that creates neutrinos of other flavors is not possible. During
this period the dominant reaction in detectors on earth would therefore be electron scattering, which has a
large correlation to the direction of the incoming neutrino and is hence useful to determine the SN location
on the sky. Shortly after the core bounce, the νe luminosity rapidly rises to 6.5× 1053 erg s−1 because of the
neutronization burst and then falls off to ∼ 1.0× 1053 erg s−1. Note that the peak of the νe luminosity from
GR1D tends to be higher than that of other simulations according to Ref. [68]. The anti-electron neutrino ν̄e

luminosity gradually rises to the same level as the νe luminosity after the core bounce. For νx, the luminosity
immediately jumps to 1.2 × 1053 erg s−1. Each of the flavors denoted by νx has the same luminosity shown
in the figure. After 100 ms, luminosities for all flavor gradually go down and this tendency continues during
the PNS cooling phase. Finally, luminosities for all flavor have almost the same value at 20 s.

In Figure 4.9 it is shown that the average νe energy is 8 MeV at the beginning, increases to 10 MeV, and
then falls off slightly during neutrino trapping. At the core bounce the average νe energy has a peak value of
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Figure 4.5: Radial profiles of the entropy, the electron fraction and the temperature. The horizontal axis is
the baryonic mass coordinate. The time in the legend is defined relative to the core bounce. The positive
values mean after the bounce and the negative values mean before. The upper panel shows the entropy, while
the lower panel shows the electron fraction. There is a jump at 0.6M� in the entropy profile and a small dip
in the electron fraction profile due to the shock wave at the core bounce.
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Figure 4.6: Accretion rate and accreted mass onto the PNS surface. The left is the accretion rate and the
right is accreted mass.
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Figure 4.7: Time evolution of the neutron star mass.

15 MeV. After the core bounce the average νe energy is nearly flat around 10 MeV and continues for hundreds
of milliseconds.

After the core bounce the average energy of ν̄e also keeps the same value but higher than that of νe

because ν̄e reacts with matter less than νe and the radius of the neutrinosphere of ν̄e is smaller than that
of νe. The average νx energy moves between 5 MeV and 3 MeV at the beginning, jumps to 17 MeV rapidly
at the core bounce, and then slightly decreases to 15 MeV. Afterward, the average energies for all flavors
gradually go down to 6 MeV. In particular, the average energies of ν̄e and νx energies are almost the same
during late times.

As seen from Figure 4.10, the behavior of the RMS energies seems to be that of the average energies for
all neutrino flavors. The RMS energies are related to pinching parameters of the neutrino spectra. Both
the average and RMS energies are related to the observed distributions in detectors on earth, indicating
observations will provide information on their original distributions at the time of the supernova detection.
Note that there is a small perturbation at 110 ms for all neutrino species in Figure 4.9 and Figure 4.10 because
the shock wave passes through the point where GR1D calculates the neutrino luminosities, 500 km, at that
time.

The total energy of the emitted neutrinos are shown in Figure 4.11, which means that the luminosity in
Figure 4.8 has been integrated until the time on the horizontal axis and summed over for all neutrino species.
Although the neutrino energy released until 1 s is only ∼ 0.5 × 1053 erg, the total neutrino energy released
until 20 s is as high as 1.4×1053 erg. This shows that it is important to follow the simulation over long times.

4.2.2 Nucleon bremsstrahlung

As described in §3.3.6, nucleon-nucleon bremsstrahlung of Eq. 3.75 is important for all flavor especially in
the late phase. Figure 4.12 shows the comparison of average energy and luminosity, whether the nucleon
bremsstrahlung is considered or not. From Figure 4.12 the νe and ν̄e luminosity is half that of νx at 20 s. The
νe and ν̄e average energy does not fall down and is much higher than that of νx. However all luminosities and
average energies are expected to converge to each other. The hierarchy of average energy is expected to be
〈Eνe〉 < 〈Eν̄e〉 < 〈Eνx〉 due to physical insights in §1.1.7. Note that there are bends around 2 s in luminosity
and average energy of νe and ν̄e. These are due to the problem that the bottom of the electron fraction of
the original neutrino reaction table is 0.03 but the lowest part of the electron fraction profiles reached 0.03
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Figure 4.8: Neutrino luminosities. The left panel displays the early phases, including the core bounce,
and the right panel displays later phases. The red, blue, and black lines mean the electron neutrino, the
anti-electron neutrino, and non-electron-type neutrinos, respectively.
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Figure 4.9: The same as Figure 4.8, except that the neutrino average energies are displayed.

during simulation.

4.3 Neutrino observations

This section shows various prediction in case that supernova neutrinos are detected in terrestrial detectors.
Statistical properties such as the number of events and average energy of events are discussed because they
provide robust information even for distant supernovae. Here, this study assumes Super-Kamiokande (SK)
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Figure 4.10: The same as Figures 4.8 and 4.9, except that the neutrino RMS energies are displayed.
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Figure 4.11: Total energy of emitted neutrinos. The luminosities in Figure 4.8 are integrated and summed
over all neutrino species up to each point on the horizontal axis.

as a detector. SK is a large water Cherenkov detector equipped with 50 kton ultra pure water. The detailed
information of SK is introduced in Chapter 5. The neutrino target of SK is pure water and the fiducial volume
of SK is assumed 32.5k̃ton for supernova burst analysis (see Chapter 7 for detail). We do not consider detector
responses in this section. In §4.3.8, the comparison of the model in Chapter 3 and SN 1987A is described.
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Figure 4.12: Comparison of average energy and luminosity switching on (thin lines) the nucleon
bremsstrahlung. The thin lines are the same as those of Figure 4.9 and Figure 4.8.

4.3.1 Inverse Beta Decay

The inverse beta decay (IBD) reaction is the dominant reaction for observation of water Cherenkov detectors.
The reaction rate is higher by two orders of magnitude than other reactions. The reaction is

ν̄e + p→ e+ + n. (4.5)

The cross section of IBD is based on the work of Strumia and Vissani [9]. The cross section is calculated as
follows. The differential cross section at tree level is written as,

dσ

dt
=

G2
F cos2 θC

2π(s−m2
p)
|M2|, (4.6)

where GF = 1.16637×10−5 GeV−2 is the Fermi coupling constant, cos θC = 0.9746 is the cosine of the Cabibo
angle, mp = is the proton mass and |M| is the matrix element. Here, we set pν , pp, pe and pn as the momenta
of electron anti-neutrinos, protons, positrons and neutrons. Note that ν means ’neutrino’ not an index. The
matrix element is taken to be

|M2| = A(t)− (s− u)B(t) + (s− u)2C(t), (4.7)

where s = (pν − pe), t = (pν − pe), u = (pν − pp). Here A(t), B(t) and C(t) are defined as

16A = (t−m2
e)
[
4|f2

1 |(4M2 + t+m2
e) + 4|g2

1 |(−4M2 + t+m2
e) + |f2

2 |(t2/M2 + 4t+ 4m2
e)

+4m2
et|g2

2 |/M2 + 8Re[f∗1 f2](2t+m2
e) + 16Re[g∗1g2]

]
−∆2

[
(4|f2

1 |+ t|f2
2 |/M2)(4M2 + t−m2

e) + 4|g2
1 |(4M2 − t+m2

e) + 4m2
e |g2

2 |(t−m2
e)/M2+

+8Re[f∗1 f2](2t−m2
e) + 16m2

eRe[g∗1g2]
]
− 32m2

eM∆Re[g∗1(f1 + f2)],

16B = 16tRe[g∗1(f1 + f2)] + 4m2
e∆(|f2

2 |+ Re[f∗1 f2 + 2g∗1g2])/M, (4.8)

16C = 4(|f2
1 |+ |g2

1 |)− t|f2
2 |/M2,

where me = 0.511 MeV is the electron mass and ∆ = 1.293 MeV is the mass difference of neutron and proton
and M = 938.9 MeV is the mass average of proton and neutron. In Equation 4.9, fi, gi are the dimensionless
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form factors and are defined as

f1 =
1− (1 + ξ)t/4M2

(1− t/4M2)(1− t/M2
V )2

, (4.9)

f2 =
ξ)

(1− t/4M2)(1− t/M2
V )2

,

g1 =
−1.270

(1− t/M2
A)2

,

g2 =
2M2g1

m2
π − t

,

where M2
V = 0.71 GeV2, M2

A = 1 GeV2 and ξ = κp − κn = 3.706 is the difference between the proton and
neutron anomalous magnetic moments. Neutrons are heavier than protons so that electron anti-neutrinos
must have higher energy than a threshold to invoke IBD. Assuming protons stop, this threshold is

Ethr =
(mn +me)2 −m2

p

2mp
. (4.10)

With electron anti-neutrino energy Eν and positron energy Ee, which is related as t = m2
e−2Eν(Ee−pe cos θ),

the angular distribution of IBD in the angle θ is

dσ

d cos θ
(Eν , cos θ) =

peε

1 + ε
(

1− Ee cos θ
pe

) dσ

dEe
, (4.11)

where θ is the angle between neutrino and positron, dσ/dEe = 2mpdσ/dt, ε = Eν/mp. The positron energy
Ee and momentum pe are as functions of Eν and θ:

Ee =
(Eν − δ)(1 + ε) + ε cos θ

√
(Eν − δ)2 −m2

eκ

κ
, (4.12)

pe =
√
E2

e −m2
e , (4.13)

with

δ =
m2

n −m2
p −m2

e

2mp
, (4.14)

κ = (1 + ε)2 − (ε cos θ)2. (4.15)

Figure 4.13 shows the cross section of IBD as a function of neutrino energy.

4.3.2 Electron Scattering

The cross section of IBD for typical supernova neutrinos is 10−41cm2 and that of ES is 10−43cm2. The ES
cross section is 100 times smaller than IBD. However the IBD reaction has no sensitivity to the direction
of supernovae while the electron scattering reaction has the strong correlation of the neutrino and lepton
directions, which is helpful to estimate supernova directions. This reaction reads

ν + e− → ν + e−. (4.16)
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Figure 4.13: Cross section of reaction of neutrino and nucleon from Ref. [9]. The left panel is total cross
section and the right panel is average cosine of the angle between ingoing neutrinos and outgoing charged
leptons. The red shows IBD.

All flavor neutrinos can invoke this reaction however the reaction rate is smaller by two orders of magnitude
than IBD. The cross section is derived from the field theory [10] and is given as

dσ

d cos θ
=4

me

Eν

(
1 +

me

Eν

)2

cos θ[(
1 +

me

Eν

)2

− cos2 θ

]2

dσ

dy
, (4.17)

dσ

dy
=
G2

FmeEν
2π

[
A+B(1− y)2 − Cyme

Eν

]
, (4.18)

y =
2
me

Eν
cos2 θ(

1 +
me

Eν

)2

− cos2 θ

, (4.19)

where the light speed c is 1, GF = 1.166 × 10−11MeV2 represents the Fermi coupling constant, Eν is the
neutrino energy, θ represents the angle between the directions of the neutrino and the scattered electron and
the coefficients A, B and C are summarized in Table 4.1 and depend upon the neutrino types [10].

ν: A B C
νe (gV + gA + 2)2 (gV − gA)2 (gV + 1)2 − (gA + 1)2

ν̄e (gV − gA + 2)2 (gV + gA + 2)2 (gV + 1)2 − (gA + 1)2

νµ, ντ (gV + gA)2 (gV − gA)2 g2
V − g2

A

ν̄µ, ν̄τ (gV − gA)2 (gV + gA)2 g2
V − g2

A

Table 4.1: Coeffients for electron scattering. Here gV = −0.5 + sin θW, where θW is the Weinberg angle
sin2 θW ≈ 0.23, and gA = −0.5
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Figure 4.14: Differential cross section of neutrino and charged lepton scattering for neutrino energy from
5 to 10 MeV as functions of y from [10]. The vertical axis multiplied by 10−43 cm2 is the differential cross
section.

4.3.3 Neutrino Oscillation

GR1D does not consider neutrino oscillations. However neutrino oscillations have been confirmed [69, 70].
In this thesis, neutrino oscillations in a vacuum and matter are taken into account for detector simulation.
Neutrino mixing follows Ref. [71, 72] and is given as:

F ′νe
= Fνx , (4.20)

F ′ν̄e
= pFν̄e + (1− p)Fνx , (4.21)

4F ′νx
= Fνe + (1− p)Fν̄e + (2 + p)Fνx , (4.22)

for the normal mass hierarchy and

F ′νe
= (1− p)Fνe

+ pFνx
, (4.23)

F ′ν̄e
= Fνx

, (4.24)

4F ′νx
= pFνe

+ Fν̄e
+ (3− p)Fνx

, (4.25)

for the inverted mass hierarchy, where F ′ν and Fν mean neutrino fluxes before and after neutrino oscillations,
respectively, and p is 0.69.

4.3.4 Monte Carlo Simulations for Supernova Observation

The simulation of neutrino observation is based on Monte Carlo simulation. The procedure of the simulation
is as follows:

1. Calculate event rate of IBD and ES at each assumed supernova distance assuming the fiducial volume
of SK is 32.5 kton,

2. Calculate the expected number of events based on the event rates in each time interval , which are
taken to be 0.01 s (t < 0.744 s, where t is the time measured from the bounce) and 0.1 s (t > 0.744 s),

3. Determine the time of each event in the time interval with random numbers,

4. Calculate the event spectrum in the time interval from the production of neutrino spectra and cross
section of IBD or ES,

5. Determine the event energy according to that spectrum for each event with random numbers.
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4.3.5 Event rate

The IBD and ES event rate is shown in Figure 4.15 and the number of total events in several time windows
is shown in Table 4.2 for the case of a supernova at 10 kpc. The total number of events, ∼ 2000 events from
this model is the same order as those of the previous works [31, 73, 40, 41]. As seen from Table 4.2, half of the
events come in the first second while the other half comes from the late phase, which shows the cooling phase
calculation is as important as the early phase calculation. Figure 4.15 shows the IBD rate quickly increases up
to 2800 Hz for no oscillation, 2700 Hz for the normal hierarchy oscillation and 2600 Hz for inverted hierarchy
after the bounce and then gradually decreases to 10 Hz at 20 s regardless of oscillations. The sharp peaks in
the electron scattering rate can be seen at the bounce, which is the only time when the electron scattering
rate can dominate the IBD rate. These peaks are 1300 Hz for no oscillation, 300 Hz for the normal hierarchy
oscillation and 600 Hz for inverted hierarchy oscillation and they correspond to the peak of the luminosity
in Figure 4.8 and average energy in Figures 4.9 and 4.10 of electron neutrinos. The scattering rates drop
to 100 Hz at around 20 ms and gently decreases to 0.3 Hz at 20 s. From the left panel of Figure 4.15, there
are differences both in the IBD and ES rates with respect to neutrino oscillations, which shows the neutrino
oscillations have a little impact on supernova neutrino observation especially on peak heights of the ES rates.

This study employs the IBD rate of Strumia and Vissani as described in §4.3.1 however there is one more
IBD rate which is often used for supernova detection studies, the IBD of Vogel and Beacom [74]. Figure 4.16
is comparing the two IBD rates and shows the two results do not differ much. The number of events of IBD
from Vogel and Beacom for no oscillation is also described in the bottom row of Table 4.2, which differ by
2.6%.
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Figure 4.15: Event rate at SK for a supernova at 10 kpc from the earth. The left panel is for the early
phase and the right panel is for the late phase. The solid lines show no oscillation, the dashed lines show the
normal hierarchy oscillation and the dash-datted lines show the inverted hierarchy oscillation. The red and
blue are for IBD and ES, respectively.
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Ntot N(0 ≤ t ≤ 0.3) N(0.3 ≤ t ≤ 1) N(1 ≤ t ≤ 10) N(10 ≤ t ≤ 20)
IBD (No osc) 1782.6 575.6(32.3%) 377.8(21.2%) 682.0(38.3%) 147.1(8.25%)
ES (No osc) 89.9 21(23.3%) 27.6(30.7%) 34.1(37.9%) 7.22(8.04%)

IBD (Normal) 1792.6 558.7(31.2%) 375.7(21%) 706.2(39.4%) 152.0(8.48%)
ES (Normal) 80.3 7.7(9.59%) 28.5(35.5%) 36.4(45.4%) 7.64(9.52%)

IBD (Inverted) 1814.9 520.9(28.7%) 371.1(20.4%) 760.0(41.9%) 163.0(8.98%)
ES (Inverted) 83.4 11.9(14.3%) 28.1(33.7%) 35.9(43%) 7.53(9.03%)

IBD of Vogel & Beacom (No osc) 1736.5 560.9(32.3%) 367.5(21.2%) 664.4(38.3%) 143.7(8.28%)

Table 4.2: Number of events divided into time intervals at SK for a supernova at 10 kpc. For each reaction
Ntot is the total number of events, N(tmin ≤ t ≤ tmax) shows the number of events in the time interval
between tmin and tmax, and the number in the brackets shows the ratio relative to Ntot.
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Figure 4.16: Assuming a 10 kpc supernova and observation in SK, the blue line is for Strumia & Vissani [9]
and the orange line is for Vogel & Beacom [74].

4.3.6 Detection properties

This thesis focuses on the number of events, their angular distribution, and the time evolution of the event
rate in SK. Events are calculated assuming supernova distances from the earth: 1 kpc, 5 kpc, 10 kpc and
50 kpc. Monte Carlo simulations are perform following §4.3.4

Figure 4.17 shows scatter plots of the event time and lepton energy. As seen from these figures, the
fractions of events with energy greater than 30 MeV decrease with time as is expected from the decline in
the average neutrino energy displayed in Figures 4.9 and 4.10. The three figures look the same regardless of
oscillations.

Figure 4.18 shows the distribution of true event directions, where the supernova is assumed to have
occurred at the center of the plot and the horizontal (vertical) direction is event longitude (latitude). Blue
points mean IBD events and the red points mean ES events. Note that IBD events are distributed over
the plot, since the outgoing positron does not preserve the direction of the incoming neutrino shown in
Figure 4.14, while the ES events concentrate at the center. As a result, the latter is useful to point back to
the supernova.
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Figure 4.19 shows the time evolution of the mean energy of IBD events which is expected to be observed
at assumed supernova distances. In these plots the red curves show the theoretical expectation, which means
an infinite number of events are observed with a perfect detector, and the blue points are examples from the
mock sample sets. For the latter the width of the time bins is 1 s except for the last two bins of the 50 kpc
model, which are 6 s and 10 s. Here the error bars Eerr are defined as

Eerr =

√√√√ 1

Nbin

∑Nbin

i=1 (Ei − Ē)2

Nbin
, (4.26)

where Nbin is the number of events in each bin, Ei is the true positron energy of the i-th event and Ē is the
average energy of events in each bin. The mock data for the supernova at 1 kpc has mean energies that almost
follow the theoretical curve. For the mock data from supernovae at 5 kpc and 10 kpc, the difference in the
mean energies from the theoretical curve is lower than 1 MeV before 5 seconds, but is higher after 5 seconds.
However, the time evolution of the mean energies overall follows the theoretical curve well. For the mock data
at 50 kpc the time evolution does not follow the theoretical expectation. Note that here these predictions
only consider statistical uncertainties, which are symmetric, while the real neutrino energy distribution is
asymmetric. In this sense the mock data distribution does not reproduce the expectation well especially in
case of insufficient statistics. A future work will consider asymmetric errors including the effect of the shape
of the neutrino spectra.

Figures 4.20, 4.21 and 4.22 show the charged particle energy and cos θ of individual events in the mock
data, where θ means the angle between the incoming neutrino and the outgoing charged particle. The top
panels in these figures show the distributions for the model at 5 kpc, the middle are at 10 kpc, and the
bottoms are at 50 kpc, which corresponds to the distance to the Large Magellanic Cloud from the earth. The
electron scattering histograms (red) are shown stacked on the IBD event histograms (blue).

Figures 4.20, 4.21 and 4.22 show that the total event number decreases with the supernova distance,
which is an expected behavior. The IBD events are flat in the cos θ distribution. On the other hand, electron
scattering events have peaks in the cos θ histograms toward the supernova direction for the mock data for
the supernovae at 5 kpc and 10 kpc. At 50 kpc, the same peak cannot be observed clearly.

4.3.7 SK-Gd

The upgrade stage of SK operations, known as SK-Gd [75], started in 2020. Since then a gadolinium
compound has been dissolved into the pure water to effectively tag neutrons from IBD. The main aims of
SK-Gd is to detect the diffuse supernova neutrino background, although, it is also expected to improve the
ability to determine the direction of a supernova burst. In fact, neutron tagging can be used to remove IBD
events, leaving the only electron scattering events for a precise determination of the supernova direction. In
Figure 4.23, it is shown that the cos θ distributions of IBD and ES events between incoming particles and
outgoing particles assuming no neutron tagging, 50%, and 90% tagging efficiency for a supernova at 10 kpc.
It is clearly shown that improved neutron tagging enhances the forward scattering peak and the pointing
ability of SK.

4.3.8 Demonstration of the analysis (comparison with SN 1987A)

To demonstrate the supernova analyzer in our framework, this model and Kamiokande’s observation of SN
1987A’s neutrinos [5] are compared. For this purpose assuming that the supernova distance is 51.4 kpc, the
detector fiducial volume is 2.14 kton and the detection threshold is 7.5 MeV, this comparison uses 100 Monte
Carlo simulations with only IBD interactions. The left panel of Figure 4.24 shows a histogram of the number
of events obtained from these simulations. Though the average expected observation in this model is four
events, 11 events were observed from SN 1987A at Kamiokande. The right histogram shows the distribution of
mean energies, which can be compared with 15.4 MeV observed at Kamiokande from Hirata et al. (1987) [5].
Compared to this observation, the average energy of this model is 16.4 MeV.
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Figure 4.17: IBD and electron scatter plots for a supernova at 10 kpc assuming the 32.5 kton inner detector
volume of SK. The vertical axis shows electron or positron energy after the neutrino reaction. The top is for
no oscillation, the middle is for the normal hierarchy and the bottom is for the inverted hierarchy.
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Figure 4.18: True direction of scattered electrons and positrons, assuming that a supernova happens at the
galactic center, which is at the center of the diagram. 10 kpc from the Earth. The blue dots are IBD events
and the red dots are electron scattering events.

The number of events on the left side of Figure 4.24 is as expected though it is lower than the observations
of SN 1987A because this model describes a weak explosion as mentioned in §4.1.2. With this in mind, it is
expected that the time evolution of the cumulative events, which corresponds to a cumulative distribution
function (CDF), may provide a comparison that depends less on the total number of events. Figure 4.25
shows a comparison of the cumulative number of events and energy of events over time. Though there are
only 11 events from SN 1987A, their accumulation tendency for both the number of events and energy of
events is similar to that of our simulation. To quantitatively compare with this model, an analysis based
on the Kolmogorov-Smirnov test (KS test) in Figure 4.26 is performed. Here the difference in the model
CDF and the Kamiokande CDF at a time t from the first event is defined as D(t). The maximum distance
|D|max between the two is a measure to evaluate the compatibility of the two CDFs and is 0.238. For an
observation of only 11 events, |D|max > 0.391, would mean incompatibility of the model and observation at
95% confidence level. Though this model needs more neutrino emission to fully account for the observation of
SN 1987A, the two are not inconsistent in terms of the time evolution of event accumulation. It is possible that
adjusting different progenitor simulations, for example using heavier progenitors, may address this model’s
underestimation of the total number of events.

The comparison to SN 1987A shows that the simulation corresponds a weaker explosion than SN 1987A.
However there are some implications for SN 1987A. For example, more infalling matter accreted onto the
PNS and heavier NS maybe formed. Maybe multi-dimensional effects are needed. Many more simulations
are needed to confirm this. In the future additional simulations will be performed and summarized as a
database. The method to simulate a lot of progenitors and a comparison of three other long time simulations
is described in Chapter 9.

4.4 Summary of simulation

The previous chapter and this chapter describe the necessity of long time simulation, methods and results.
The long time supernova simulation, which consistently calculates supernovae from core collapse to explo-
sion without any artificial method, was established. Moreover predictions of the neutrino signals in water
Cherenkov detectors and analysis methods were described. For instance, the z9.6 progenitor leads to similar
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Figure 4.19: The evolution of the mean energy of positrons from IBD events (blue). The red curves show the
theoretical expectation. Horizontal bars show the width in time over which the mean energy is calculated.
The width of time bin is normally 1 second, though the last 2 bins are 5 seconds and 10 seconds for the 50
kpc model as there are fewer events at late times. There are no events in the last 1 second in this model. The
average energies are likely to be below the theoretical values due to the asymmetric shape of the theoretical
energy distribution and the limited statistics of observation at this distance.
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Figure 4.20: Distribution of cos θ and energy of charged particles from IBD (blue) and electron scattering
(red) reactions. Electron scattering events (red) are shown stacked on IBD events (blue). The top, middle
and bottom panels are for the models with the supernova distances of 5 kpc, 10 kpc, and 50 kpc (bottom)
for no oscillation, respectively. The numbers in the legends indicate the total number of events.
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Figure 4.21: The same as Figure 4.20 expect that the normal hierarchy oscillation is considered.
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Figure 4.22: The same as Figure 4.20 expect that the inverted hierarchy oscillation is considered.
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Figure 4.24: Results of 100 Monte Carlo simulations that assume a z9.6 supernova happens at 51.4 kpc.
Both figures are assumed to be observed with the 2.14 kton target of Kamiokande where neutrino events with
the energy lower than 7.5 MeV are not included. The left histogram shows the total number of events and
has a mean of four in our model. The right histogram shows the mean energy of the neutrino events and has
an average of 16.4 MeV.
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time evolution but has half the neutrinos compared to SN 1987A and this progenitor does not explain the
SN 1987A supernova as a result. These are the first step in the development of the integrated framework in
Figure 3.1.

As a next step we have to increase simulations to cover a larger parameters space, for example mass of a
neutron star or a black hole after. We will upgrade the long time simulator to treat multi-dimensional effects
and black hole formation, see chapter 9 for the specific method. Chapter 9 also describes three additional
long time simulations, which lead to different PNS masses. Various supernovae will be calculated and finally
summarized as a database. In the database, the neutrinos signals will be summarized as a function of
progenitor mass, NS or BH mass, strength of multi-dimensinal effects and so on. If a supernova burst is
detected with neutrinos, these parameters will quickly be determined by comparison to the neutrino signal.
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Chapter 5

Super-Kamiokande

This chapter introduces the Super-Kamiokande experiment, describing the detector structure, its simulation,
and its calibration as well as the event reconstruction algorithm.

5.1 Super-Kamiokande detector

Super-Kamiokande (SK) is a water Cherenkov detector. It is a stainless steel cylindrical tank which is
39.3 m in diameter, is 41.4 m tall, and is filled with 50 kton of ultra-pure water. A schematic diagram is
shown in Figure 5.1. SK is located 1,000 m under the top of Mt. Ikenoyama in Gifu prefecture in Japan.
This corresponds to a depth of 2700 m-water-equivalent(m.w.e), where only muons with energies more than
1.3 TeV can reach the detector. The muon flux as a function of depth is shown in Figure 5.2. SK has an
extremely low muon rate of 2 Hz. This is useful for supernova analyses because cosmic ray muons cause
spallation backgrounds as described in §6.2.

The detector is optically separated into two regions, the inner detector (ID) and the outer detector
(OD). The 20-inch photomultiplier-tubes (PMTs) used in the ID and 8-inch PMTs used in the OD observe
Cherenkov light from charged particles traversing the tank. The physics targets of SK include: proton
decay search, neutrino oscillation measurements with atmospheric neutrinos, solar neutrinos and accelerator
neutrinos, dark matter search and studies of astronomical objects such as the sun and supernovae.

SK started its operation in April 1996 and has been running in six run periods to date, from SK-I to
SK-VI summarized in Table 5.1. The SK-I period continued for the first five years until July 2001. During
the SK-I period SK was operated with 40% photocathode coverage. After SK-I SK stopped for maintenance
and to replace bad PMTs. However during the maintenance an accident resulted in the implosion of a PMT
whose shock wave caused a chain reaction that destroyed half of all the PMTs. During the next period,
SK-II, SK was hence operated with 20% coverage. In this period, plastic covers were installed on all ID
PMTs to protect from shock waves. After recovering lost PMTs, SK-III started and was operated on August
of 2008. After the SK-III period a large update was done. In this update new front-end-boards are installed.
These new front-end-boards record data with no dead time and low electrical noise, which enabled the energy
threshold to be decreased and for signals from neutron captures on hydrogen to be recorded. This period
is called SK-IV and it is longest in six periods, corresponding to ten years. In 2018 SK was shutdown for
a half of year and underwent refurbishment. In this refurbishment, the tank was cleaned up, water leaking
was fixed and bad PMTs were replaced. From January of 2019 the SK-V periods started. Since July 2020, a
gadolinium compound has been dissolved into the pure water to improve the detector’s ability to tag neutrons
from IBD. This period is SK-VI and the beginning of the SK-Gd project.
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Phase SK-I SK-II SK-III SK-IV SK-V SK-VI
Start Apr., 1996 Oct., 2002 Jul., 2006 Sep., 2008 Jan., 2019 Jul., 2020
End Jul., 2001 Oct., 2005 Aug., 2008 May., 2018 Jul., 2020 -

Number of ID PMTs 11,146 5,182 11,129 11,129 11,129 11,129
ID PMT coverage 40% 19% 40% 40% 40% 40%

PMT cover No Yes Yes Yes Yes Yes
Neutron tagging No No No Yes Yes Yes

Gadolinium No No No No No Yes
Threshold [MeV] 4.5 6.5 4.0 3.5 3.5 3.5

Table 5.1: Summary of the six SK run periods.

Figure 5.1: A sketch of the SK detector, under MT.
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5.2 Detection Principle

SK detects Cherenkov light emitted from charged particles traveling through the detector at speeds faster
than the light speed in water. The momentum threshold for Cherenkov radiation depends on particle types:
for example, 0.57 MeV · c−1 for electrons, 118 MeV · c−1 for charged pions and 1151 MeV · c−1 for protons.
The Cherenkov light is emitted in a cone shape, whose opening angle is characterized with the Cherenkov
light angle θ and is related to speed of particles. The angle is calculated via cos θ = 1/nβ, where c is the light
speed, n is refractive index of matter and β is defined as the ration of the particle’s speed v to the spped of
light in vacuum c, β = v/c. In water, whose refractive index is n ∼ 1.33 the Cherenkov angle for sufficiently
relativistic particles (β ∼ 1) is θ ∼ 42 deg.

The Cherenkov photons reach the PMTs and are detected as ring patterns. The ring patterns differ by
the particle type, the particle momentum, the multiplicity and so on. For example, an electron-induced ring
is likely to be fuzzier than a muon-induced ring because of electromagnetic cascades. Figure 5.3 shows an
example of the Cherenkov ring patterns observed at SK and of a supernova event simulation.

Super-Kamiokande IV
Run 68530 Sub 999999 Event 8


00-00-00:00:00:00

Inner: 209 hits, 278 pe

Outer: 0 hits, 0 pe
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Figure 5.3: Examples of the event display of SK which shows the Cherenkov ring pattern of a muon-like event
(left), an electron-like event (right) and supernova event (bottom) Each dot corresponds to a PMT and the
color scale indicates the detected charge. Top two plots are taken from Ref. [12].
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5.3 Detector Components

5.3.1 Water Tank

The water tank is made of stainless steel and is 39.3 m in diameter and 41.4 m in height. The tank is divided
into the ID and OD by a support structure, to which the ID and OD PMTs are attached, as seen in Figure 5.4.
The ID part measures 33.8 m in diameter and 36.2 m in height, contains 32.5 kton water, and is instrumented
with 11,129 20-inch PMTs on the support structures. The PMT photocathode coverage is 40% and the other
uncovered area in the ID is covered with black sheets to avoid reflection. The OD region is about 2 m thick
between the support structure and the tank wall. The OD has 1,885 8-inch PMTs facing outward the tank
wall. All OD surfaces except for the photocathodes of PMTs and their wavelength-shifting plates are covered
with reflective white Tyvek sheets to collect photons.

Figure 5.4: Schematic illustration of module and PMT array. [11].

5.3.2 Photomultiplier Tubes

The production of Hamamatsu Photonics named R3600 is employed as the ID PMT and they are optimized
for the SK experiment. The schematic diagram of the PMT is shown in Figure 5.5. The specification of
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the 20-inch PMT is shown in Table 5.2. The photocathode is made of bialkali (Sb-K-Cs) and the dynode is
the 11-stage Venetian blind type. The gain is about 107 when operated at 2,000 V. The quantum efficiency
dependency on wavelength is as shown in Figure 5.6, being the most sensitive to 360 nm and 21% at the peak.
The single photoelectron (p.e.) distribution is clear in Figure 5.7 The transit time, which means the time
between ingoing photons and output pulses, spreads by about 2.2 ns as seen in Figure 5.8. The average dark
rate at 0.25 p.e. threshold is about 3 kHz. Note that 136 new PMTs with a different anode structure (so-
called ”box and line”) for Hyper-Kamiokande were installed in 2018. After the accident in 2001, the covers
are attached to each ID PMT. The PMT covers are composed of acrylic glass on the photocathode side and
fiber reinforced plastic on the backside. The acrylic glass transparency is more than 96% for wavelength
above 350 nm in water.

Two types of PMTs are employed at the 8-inch PMTs: 591 R1408 PMTs from the IBM experiment
and 1,293 R5912 PMTs that were installed after the accident in 2001. The OD PMTs are mounted into
wavelength-shifting (WS) plates to enhance light collection efficiency. The WS plates are the square acrylic
panel of 60 cm×60 cm and 1.3 cm thick, doped with a 50 mg/L scintillator, bis-MSB C24H22. The WS plates
improve light collection by a factor of 1.5.

Shape Hemispherical
Photocathode area 50 cm diameter
Window material Bialkali (Sb-K-Cs)

Quantum efficiency 20% at wavelength of 390 nm
Dynodes 11 stage Venetian blind type

Gain 107 at 2000 V
Dark current 200 nA at 107 gain

Dark pulse rate 3 kHz at 107 gain
Cathode non-uniformity < 10%
Anode non-uniformity < 40%

Transit time 90 nsec at 107 gain
Transit time spread 2.2 nsec (1σ) for 1 p.e. equivalent signals

Weight 13 kg
Pressure tolerance 6 kg · cm−2 water proof

Table 5.2: Specification of the 20-inch ID PMT.

5.3.3 Helmholtz Coils

To cancel the effect of the geomagnetic field, which interferes with photoelectrons in the PMTs, SK is equipped
with 26 sets of Helmholtz coils around the tank [13]. The Helmholtz coils reduce the magnetic field in the
tank, which is 450 mG without the coils, to 32 mG.

5.3.4 Water and Air Purification Systems

SK always contains ultra pure of 50 kton and it is crucial to maintain the water quality because it directly
affects Cherenkov light propagation. Water is originally taken from two streams of the Kamioka mine,
purified and circulated in the tank at a flow rate of 60 ton/hour. The water circulation system is illustrated
in Figure 5.9. In this system water is supplied at the bottom of the tank and drained from the top of the
tank. Water is usually convecting below the vertical position of -11 m, where the center of the tank is set
as the origin of the coordinate. In this region the temperature of water is almost uniform and above this
level the temperature gradually rises as shown in Figure 5.10. This shift leads to 5% difference in the water
transparency over the ID tank.

In low energy analysis, including supernova neutrino studies, radioactive impurities are dominant back-
grounds, and are mainly radon. The radon concentration in the SK water is decreased by the water purifi-
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Figure 5.5: Schematic diagram of the ID PMT (R3600) [11].
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Figure 5.7: Distribution of photoelectron of the ID
PMT [11].

Figure 5.8: Spread of transit time of electrons of the
ID PMT[11].
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Figure 5.10: The water temperature as a function of
the ID vertical position [13].

cation system down to 1.83± mBq ·m−3. Moreover, the air purification system is running to prevent radon
from the mine air from dissolving into the purified water [76].

5.4 Data Acquisition System

As mentioned in §5.1, the new dead-time free front-end-boards were installed in SK-IV, which is called
QTC-Based Electronics Ethernet (QBEE) [14], instead of the old Analog Timing Module [77].

5.5 Front-End-Board: QBEE

The QBEE boards consist of a charged-to-time converter (QTC) and a time-to-digital converter (TDC).
Figure 5.11 shows a block diagram of the QTC and Figure 5.12 shows the detailed diagram of a channel.
Each QBEE board has 8 QTCs, each of which is connected to 3 PMTs. The dynamic range of the QTC
is from 0.2 to 2500 pC and three different channels of the QTC correspond to three different gains, whose
relative ratios are 1: 1/7: 1/49, labeled “large”, “medium” and “small”, respectively.

Figure 5.13 shows the timing chart for the operation of the QTC. The charging timer in Figure 5.12 opens
its gate for 400 ns after being triggered by the output signal from the discriminator. The switch between
the charging capacitor and the voltage-to-current (V/I) converter closes in the charge gate and the capacitor
accumulates the input signal charge. A discharge gate is opened for 350 ns after the gate. The switch between
the capacitor and the discharging current source closes and further input signals are ignored during this time.
The trailing edge of the output signal from the QTC represents the time when the voltage of the integrated
signal falls below the threshold of the comparator. The output signal from the QTC is proportional to the
charge of the input signal. Reset and VETO signals are issued at the end of the discharge gate to initialize
the other QTC circuits. The total time for processing one signal is about 900 ns.

5.5.1 Triggers

A variety of triggers are prepared for SK data-taking, depending on the number of PMT hits within a 200 ns
time window, which corresponds to the time for a particle traveling at the light speed to pass through the
diagonal of the tank and is notated as N200; for example, N200 in the OD is used for the OD trigger. The
trigger types are the super-low energy (SLE), low energy (LE), high energy (HE), super-high energy (SHE),
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Figure 5.11: Schematic block diagram of the QTC and its surroundings [14].
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Figure 5.13: Timing chart for the QBEE operation. [14].
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outer detector (OD), after-trigger (AFT) and T2K triggers. Once a trigger is issued, all of the hits before
and after the trigger within a time window, which is changeable depending on the type of triggers, are stored.
The criteria of the triggers and the time window are summarized in Table 5.3. In this study, LE triggered
events are employed.

Trigger Type condition Time Window[µs]
SLE N200 > 34→ N200 > 31 (after May of 2015) [-1.5, +1.0]
LE N200 > 47 [-5,+35]
HE N200 > 50 [-5,+35]
SLE N200 > 70→ N200 > 58 (after September of 2011) [-5,+35]
OD N200 > 22 in OD [-5,+35]

AFT SHE + no OD [+35,+535]
T2K Beam spill timing [-500,+535]

Table 5.3: Summary of the SK triggers.

5.6 Detector Simulation

Particle interactions and transport, emission and propagation of the Cherenkov light in water and responses
of the PMT and electronics are simulated with a dedicated Monte Carlo (MC) software, see Ref. [78]. The
physics process considered in the simulator is based on GEANT3 [79].

For charged particles, Cherenkov light emission follows the equation:

d2N

dxdλ
=

2πα

nλ2

(
1− 1

n2β2

)
, (5.1)

where N is the number of Cherenkov photons, λ is the wavelength of the photon, n is the refractive index of
water, α is the fine structure constant, β is the velocity of the charged particle in a unit of the light speed
in a vacuum and x is the traveling length. The refractive index n depends on various environmental factors:
for example, wavelength, water temperature and water pressure so actual SK measured values are used in
the simulation. Only photons whose wavelength is between 300 and 700 nm, which is in the PMT sensitive
range, are generated. The Cherenkov photons travel in water undergoing scattering and absorption. The
probability for each process depends on the water transparency. This simulator takes the Rayleigh and Mie
scatterings into account. The reflection of the Cherenkov photons on the wall of the tank is considered. See
Ref. [80] for more information.

5.7 Event Reconstruction at Low Energy

For supernova neutrinos, low energy reconstruction tools is used. In SK, “low energy” means deposited
energy less than about 100 MeV. Hereafter we employ the coordinate system in Figure 5.14. The origin is set
at the center of the tank and z axis is perpendicular to the bottom and top, the upward direction is positive
and the downward direction is negative. The x and y axes are in the plane parallel to the bottom and top.
The radial distance is defined as r =

√
x2 + y2. The standard fiducial volume (FV) of 22.5 kton is defined

as the region 2 m away from the ID walls.

5.7.1 Vertex and Direction Reconstruction

The vertex position is reconstructed from the timing of PMT hits. Low energy electrons and positrons travel
a short distance in water. For example, 10 cm for 20 MeV particles. That is why the tracks are treated as
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Figure 5.14: The coordinate system of the tank
.

point-like sources. We define the likelihood function as below,

L(x, t0) =

Nhit∑
i=1

logP (t− ttof − t0), (5.2)

where x is the testing vertex, ttof is the time-of-flight (TOF) from the vertex to the hit PMT, t0 is the time
of the interaction, which is treated as a free parameter, t − ttof − t0 means the timing residual of each hit
PMT and P (t− ttof − t0) is the probability density function of the timing residual for a single photoelectron
signal, which is measured from the LINAC calibration. The position of the vertex and t0 are determined
with the criterion that they maximize the likelihood. The vertex resolution as a function of electron energy
is shown in Figure 5.15.

The event direction is reconstructed from information on the Cherenkov ring pattern. This is performed
by maximizing the next likelihood,

L(d) =

N20∑
i=1

log f(cos θi, E)× cos θi
a(θi)

, (5.3)

where N20 is the number of PMT hits within a 20 ns timing window around t = ttof − t0, d is the event
direction, f(cos θi, E) is the the expected distribution of the opening angle between the true event direction
and the observed direction, E is the event energy, θi is the reconstructed event direction and a(θi) is the
correction for the PMT acceptance. The angular resolution is about 25 deg for 10 MeV electrons.

In the reconstruction of the vertex and direction of events, two parameters, which evaluate how far an
event is from the ID wall, are defined, dwall and effwall, which means the distance from the closest ID wall
and the distance from the reconstructed vertex to the ID wall measured backward along the reconstructed
direction. A schematic diagram is given in Figure 5.16. In this thesis, dwall is more important than effwall.

To evaluate fit quality two parameters are employed, ggood and gdir. The vertex reconstruction goodness
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ggood is defined as,

ggood =

∑
i wi exp

(
(− 1

2

(
∆ti
σ

)2)∑
i wi

, (5.4)

wi = −1

2

(
∆ti
ω

)2

, (5.5)

∆i = tres,i − t0, (5.6)

where i is the index of hit PMTs, tres,i is the timing residual, t0 is the fit value minimizing all tres,i and wi is
the weight for th i-th hit PMT to reduce dark noise. Now, w and σ are set to 60 ns and 5 ns respectively. This
summation is performed over all of the hit PMTs requiring |∆ti| < 50 ns for the numerator and |∆ti| < 360 ns
for the denominator.

The angular quality parameter gdir is calculated from spatial uniformity of hit PMTs based on the
Kolmogorov-Smirnov test,

gdir =
maxi { 6 uni(i)− 6 data(i)} −mini {6 uni(i)− 6 data(i)}

2π
, (5.7)

where 6 data(i) is the azimuthal angle of the i-th hit PMT included in moving 50 ns window and the number of
the hits is designated as N50 and 6 uni(i) = 2πi/N50 is the azimuthal and of the i-th hit PMT in the simulation
when a uniform distribution is assumed. The ggood value become higher as the timing distribution becomes
sharper while the gdir become lower as the space distribution becomes more uniform. In real analyses, the
new value which is composed of the combination of squared ggood and gdir is used and called ovaQ. The
definition is

ovaQ = g2
good − g2

dir. (5.8)

OvaQ ranges from 0 to 1 and the larger value of Ovaq indicates better reconstruction; if ovaQ is 0, the event
fails to be reconstructed or is likely to be a background and if ovaQ is 1, the event is perfectly reconstructed.

5.7.2 Energy Reconstruction

The effective number of hits Neff is employed for the energy reconstruction. The definition follows,

Neff =

N50∑
i=1

[
(Xi + εtail − εdark)× Nall

Nnormal
× Rcover

S(θi, φi)
× exp

(
ri
λrun

)
× 1

QEi

]
, (5.9)

where N50 is the number of hit PMTs within a 50 ns time window. The other parameters are

• Occupancy Xi: The low energy reconstruction is performed assuming that only one photon hits one
PMT. This assumption is invalid at higher energy. When a PMT detects multiple photons, the sur-
rounding PMTs are likely to have hits. The term Xi is used to estimate the multiple photoelectron
effect for i-th PMT and defined as,

Xi =

{
log
(

1
1−xi

)
(xi < 1)

3.0 (xi = 1)
, (5.10)

where xi is the ratio of the number of hit PMTs to the total number of PMTs in a 3× 3 patch around
the i-th hit PMT.

• Late hits εtail: Some Cherenkov photons maybe arrive late due to scattering and reflection so that they
are detected within the 50 ns time window. This term corrects the effect.

• Dark noise εdark: This term represents the contribution of dark noise and is subtracted from the
occupancy.
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• Correction of the bad PMTs Nall/Nnormal: Some PMTs may fail and their number increases with time.
Bad PMTs mean PMTs which do not output pulses or output wrong information. This term corrects
the effect. Here, Nall is the number of all PMTs and Nnormal is the number of PMTs working well.

• Correction for the PMT coverage Rcover/S(θi, φi): The effective photocathode is S(θi, φi), where θi is
the incident angle and φ is the azimuth angle. the acceptance of the PMT is corrected by Rcover.

• Correction of the water transparency ri/λ: This term corrects the attenuation in water whose attenu-
ation length is λrun, where ri is the distance from the i-th PMT to the vertex.

• Correction for the PMT quantum efficiency 1/QEi: The last term represents correction for the quantum
efficiency of PMTs.

Figure 5.17 shows the relation between the effective number of hits and the reconstructed visible energy.
Linearity better than ±0.5% is achieved in the energy region from 0 to 80 MeV. In this thesis, the uncertainty
of energy reconstruction is taken into account in systematic errors.
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Figure 5.17: Relation between the number of effective hits Neff and the reconstructed visible energy fitted to
a line (top). Ratio of the MC and the fit values (bottom)[1].

5.7.3 Cherenkov Opening Angle Reconstruction

Cherenkov opening angles are reconstructed as the most frequently occurring value in the distribution of
opening angles calculated from all three-hit combinations of the hit PMTs within a 15 ns time window. The
distribution of angles from the combinations is shown in Figure 5.18 for typical events. Cherenkov angles are
characterized by event topologies and used to identify particle types. Electron and single γ-ray events are
likely to be θ ∼ 42 deg while multiple γ events have higher angles. In the low energy region, muons are not
so relativistic as to have 42 deg but lower angles.

5.8 Detector Calibration

There are various ways to calibrate the SK detector. This section describes an overview of them. See
Refs.[11, 13, 81, 82] for details.
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5.8.1 PMT Calibration

The absolute gain is commonly applied to all PMTs to convert the number of photoelectrons into the charge.
The high-voltages applied to PMTs were determined at the beginning of the SK-III with a Xe light source.
The absolute gain is determined from the distribution of the average charge of a single photoelectron, which
is 2.645 pC/p.e. in SK-IV.

The relative gains are measured with high and low intensity lights from a Xe light source. The charge
detected by the i-th PMT, Qiobs, in the high intensity measurement is written as,

Qiobs ∝ Iihigh ×QEi ×Gi, (5.11)

where Iihigh is the light intensity reaching the i-th PMT, and QEi and Gi are the quantum efficiency and the
relative gain of the i-th PMT, respectively. In the low intensity measurement, the number of observed hits,
Nobs, is written as,

N i
obs ∝ I i

low ×QEi, (5.12)

where Iilow is the light intensity reaching the i-th PMT. From Equations 5.11 and 5.12,

Gi =
Qiobs

N i
obs

× Iilow

Iiobs

. (5.13)

Light attenuation and geometric effects are canceled by comparison of the high and low intensities. The
measured relative PMT gains fluctuate within 6%.

The relative timing of each PMT is measured with a laser. A N2 laser beam, whose wavelength is 337 nm,
is injected from a ball at the center of the ID. A schematic diagram of the calibration is shown in Figure 5.19.
The plot of timing versus a charge of a PMT is shown in Figure 5.20.

5.8.2 Energy Calibration

There are three ways to conduct the energy calibration: LINAC, DT generator and decay electrons. LINAC is
a electron linear accelerator and is installed on the top of the SK tank [15]. It injects mono-energetic electron
beams into the SK water. The maximum electron energy is 19 MeV and energy precision is monitored with a
germanium detector. Beams are injected at different positions in the tank to investigate position dependence
of the event reconstruction. The setup and calibration points are shown in Figure 5.21. The comparison of
LINAC data and MC data is shown in Figure 5.22. The energy accuracy determined with LINAC is within
1%.

A cross-check calibration using deuterium-tritium (DT) is also used. The DT generator emits neutrons
which react on 16O to create 17N . The 17N decays with the halflife of 7.13 s and 6.1 MeV γ ray, 4.3 MeV and
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Figure 5.19: Schematic diagram of the timing calibration.[13].
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10.41 MeV β particle are emitted. The γ is employed for the calibration. This calibration is performed every
a few months. The DT generator calibration is also performed at different positions dependence is within
1%. The last calibration source is decay electrons from muons. This calibration is employed up to 60 MeV.

These calibrations are performed regularly. The stability of the detector have been monitored in the
SK-IV period and is stable about its average within 1% as seen in Figure 5.23.
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Figure 5.23: Neff distribution in SK-IV. The horizontal axis is time. The blue line shows the average and the
red lines shows ±0.5% values [1]

5.9 Supernova monitor

SK is equipped with a supernova monitor[30], called “SN monitor”. This monitor provides real-time moni-
toring of supernovae and if a supernova is detected, SK will inform telescopes throughout the world of the
supernova time and directions within 30 minutes of the events. The SN monitor searches for “event clusters”.

5.9.1 Data process

The data process of the SN monitor is shown in Figure 5.24. The monitor employs special data processing
different from that of the normal data in order to analyze as soon as possible. The monitor extract events
following the cut criteria in Table 5.4.

Cut criteria
Reconstructed energy > 7 MeV
Fitting quality cut ggood > 0.4

Fiducial volume cut dwall > 200 cm

Table 5.4: Event cut criteria of the SN monitor.

5.9.2 Definition of event cluster

The SN monitor search processes data and searches for event clusters. The schematic diagram of event
cluster search is shown in Figure 5.25. In event cluster search, we count the number of events in a given time
windows. If the number of events exceed a corresponding threshold 1, the collection of events is regarded
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Figure 5.24: The block diagram of the SN monitor. From Ref. [30]

as a event cluster. Finally some events 5 s before the first event of the cluster and up to 20 s after the last
event of the cluster are also included in the cluster. Table 5.5 shows event cluster criteria of the SN monitor.
If a collection of events meet one criterion, the collection is regarded as an event cluster. Each window
corresponds to a supernova phase: the 0.5 s window is the time from the initial core collapse to subsequent
bounce, the 2 s window is the time until shock revival and the 10 s window is the neutron star cooling phase.
The window lengths are set long enough to reduce model dependence. The thresholds of the number of events
are set to cover out to 60 kpc, which covers the entirety of our galaxy and the surrounding nebulae such as
LMC and SMC. Detailed properties of event clusters are described in Chapter 6.

Thresholds of event number Time window [s]
Time window 1 23 events > 0.5 [s]
Time window 2 27 events > 2 [s]
Time window 3 39 events > 10 [s]

Table 5.5: Time windows and thresholds of the number of events of SN monitor.

5.9.3 Sensitivity

The sensitivity of the monitor is shown in Figure 5.26. The target of the SN monitor is relatively near
supernovae from the earth, which generate more than 100 events in a few tens of seconds. The sensitivity,
which depends on supernova models, reaches 200 kpc but maintains a 100% detection efficiency out to only
150 kpc

5.9.4 Supernova direction fit

If a supernova is detected, the SN monitor has to determine the direction to the supernova as soon as possible
and to alert other observatories throughout the world. Figure 5.27 shows the result of the direction fit. The
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SN monitor determines the supernova direction using a maximum likelihood method. The likelihood function
Li for the i-th event is

Li =
∑
r

Nrkpr(Ei, d̂i; d̂SN), (5.14)

where the index r means one of the four neutrino interactions: inverse beta decay (IBD), electron scattering
(ES) of anti-electron neutrino, electron scattering of the other neutrinos and the charged current interactions
on oxygen, k means the index of energy bins running from 1 to 5. Here, Ek is the total electron energy
range of 7 < E1 < 10, 10 < E2 < 15, 15 < E3 < 15, 15 < E4 < 22 and 22 < E5 < 35 MeV. In addition in
Equation 5.14, Nrk is the number of events denoted as interaction r in the i-th energy bin and pr(EI , d̂i; d̂SN)
is a probability density function (PDF) of Ei and the inner product of the i-th event and a proposed supernova

direction, d̂i · d̂SN = cos θSN.
The PDF is determined using supernova MC. The number of anti-electron neutrino ES events Nν̄ee,k

is inferred from the number of IBD and the reaction Nν̄ee,k =
∑
mAkmNIBD,k, where Akm is the matrix

calculated from a ratio of the total cross sections of ES of anti-electron neutrino and IBD. The procedure
for determining the ES is as follows: divide the ES events from the Livermore model [31] into 1 MeV width
bins from 7 to 35 MeV and, fit the cos θSN distribution with the known supernova direction in MC using
a model function that is the superposition of four exponential functions and eight parameters for each bin
and compute the eight parameters by interpolating the parameters neighboring two energy bins. The PDFs
for IBD and interactions on oxygen is obtained with a similar procedure. See Ref. [30] for details of the
algorithm. The likelihood function is defined as

L = exp

∑
k,r

Nrk

∏
i

Li (5.15)

and maximized via
∂L
∂Nrk

=
∂L
∂d̂SN

= 0, (5.16)

where r = ν̄ep, νe and ν16O for Nrk and dSN for r = ν16O is assumed to be the same between neutrino and
anti-neutrino. For r = ν16O with k = 1, 2, 3 as we regard Nrk = 0 because the interaction rates is negligible
for those energies. In this fitting, 14 parameters are varied.
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Figure 5.26: Sensitivity of the SN monitor for each SN model. The top is for no noscillation, the middle is
for normal mass hierarchy and the bottom is for inverted hierarchy. [30]
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Before this fitting, a rough initial direction is determined from grid search on a sky map. We count the
number of events cos θSN > 0.8 and regard the direction of the grid which contains the maximum number of
events as the initial direction.

Figure 5.27: Fitted direction of a supernova MC following the Livermore model at 10 kpc. The blue points
are IBD and interactions on oxygen and the red points are ES. The star marker is the supernova direction
from the direction fit. From [30].
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Chapter 6

Event cluster for supernova
identification

In the previous chapter event clusters are defined. This chapter describes event clusters in detail. This
chapter provides its properties and background phenomena.

6.1 Event cluster

Supernova bursts make neutrino events in the tank over a short period. Normally, neutrino events are
observed about one per hour; for example event rate of around 10 MeV solar neutrinos is about 1 ∼
10 event/day/MeV[15]. Hence observing more than 2 neutrino events with 1 s is rare and can provide evidence
of a supernova explosion. In fact supernova search is performed as event cluster search in SK.

6.1.1 Supernova cluster

Figure 6.1 shows an example of a real supernova cluster from the Kamiokande experiment’s observation of
SN 1987A. There are several events which are clearly higher than a background level for a brief period.
Kamiokande succeeded to observe 11 events for 12 seconds. In SK it is expected that more than 1,000 events
will be observed from galactic supernovae as shown in Figure 4.17.

Events within supernova clusters are likely to be distributed uniformly in the tank and the spatial distri-
bution is a distinguishing trait of supernova clusters that is model independent. In this thesis, this feature is
employed identify supernova clusters.

6.1.2 Other phenomena which make event clusters

There are other phenomena which make event clusters in the tank besides supernovae: spallation, electronics
trouble, supernova test and flashing PMTs. Spallation means the phenomenon of high energy cosmic-ray
muons entering the tank and breaking up oxygen nuclei as they travel, resulting in the production of radioac-
tive isotopes. Electronics troubles happen in front-end boards. The front-end boards could send incorrect hit
information for a short time due to such noise. These hit information could be reconstructed as events like
supernovae. SK constantly generates test supernovae in the tank and trains shifters to properly handle real
supernovae. These testes are is also used for evaluating the DAQ performance under high rate conditions
similar to those expected for and actual supernova. These supernova tests are normally performed in test
runs, which are not employed in physics analyses. However, sometimes these tests are performed during
normal runs to simulate and actual supernova in order to train shift workers. Flashing PMTs produce flashes
in the tank due to spontaneous discharges at their dynodes and the light is observed by surrounding PMTs
for a short time. Electronics troubles, supernova tests and flashing PMTs are recorded in log books. We can
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Figure 6.1: Event cluster of SN 1987A at Kamiokande. The vertical direction shows event energy and the
horizontal direction shows time. The highest event corresponds to 35.4 MeV. Time proceeds from right to
left in the plot. Each bin shows 10 s. On the right side, there is a collection of higher events for a short time.
The blank before the cluster is due to maintenance. From Ref. [4]

remove these background by checking the log books. Spallation therefore become a dominant background for
this search and will be described in §6.2 in detail.

6.2 Spallation

This section describes properties of spallation events and a standard method to reduce spallation events.

6.2.1 Isotopes

Cosmic-ray muons enter SK at 2 Hz. These cosmic-ray muons break up oxygen nuclei and produce particles
such as photons, neutrons and pions. These secondary particles react on other nuclei in water and finally
produce various radioactive isotopes. Table 6.1 shows isotopes produced by spallation at SK. Photons and
β particles from decays of these isotopes range from a few MeV to 20 MeV, which is in the range of most
supernova neutrino energies.

6.2.2 Spallation cut

Spallation products should be produced along a muon track. Hence we can confirm whether an event is
spallation or not from correlation between the event and a muon track. This analysis is called spallation
cut. There are different spallation cut methods for different analyses. In this thesis, the spallation cut for
solar analysis is employed [15]. Figure 6.2 shows schematic diagram of the spallation cut. The concept of the
spallation cut is to evaluate the distance and time difference of an event and a proceeding muon track as well
as measure the charge deposition of the muon, which is related to possibility of creating spallation products.
The idea is as follows. We defined 4 parameters:

• ∆L: Distance from an event to the track of a preceding muon.

• ∆T : Time difference between the event and the muon.
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Isotope Half-life Decay mode Yield Primary process
[s] [×10−7muon−1g−1cm2]

n 2030
18N 0.624 β− 0.02 18O(n, p)
17N 4.173 β−n 0.59 18O(n, n+ p)
16N 7.13 β−γ(66%), β−(28%) 18 (n,p)
16C 0.747 β−n 0.02 (π−, np)

15C ? 2.449 β−γ(63%), β−(37%) 0.82 (n, 2p)
14B 0.0138 β−γ 0.02 (n, 3p)
13O 0.0086 β+ 0.26 (µ−, p+ 2n+ µ− + π−)
13B 0.0174 β− 1.9 (π−, 2p+ n)

12N ? 0.0110 β+ 1.3 (π+, 2p+ 2n)
12B ? 0.0202 β− 12 (n, α+ p)
12Be 0.0236 β− 0.10 (π−, α+ p+ n)

11Be ? 13.8 β−(55%)β−γ(31%) 0.81 (n, α+ 2p)
11Li 0.0085 β−n 0.01 (π+, 5p+ π+ + π0)
9C 0.127 β−γ 0.89 (n, α+ 4n)

9Li ? 0.178 β−n(51%), β−(49%) 1.9 (π+, α+ 2p+ n)
8B 0.77 β+ 5.8 (π+, α+ 2p+ 2n)

8Li ? 0.838 β− 13 (π−, α+ 2H + p+ n)
8He 0.119 β−γ(84%), β−, n(16%) 0.23 (π−, 3H + 4p+ n)
15O 351 (γ, n)
15N 773 (γ, p)
14O 13 (n, 3n)
14N 295 (γ, n+ p)
14C 64 (n, n+ 2p)
13N 19 (γ, 3H)
13C 225 (n, 2H + p+ n)
12C 792 (γ, α)
11C 105 (n, α+ 2n)
11B 174 (n, α+ p+ n)
10C 7.6 (n, α+ 3n)
10B 77 (n, α+ p+ 2n)
10Be 24 (n, α+ 2p+ n)
9Be 38 (n, 2α)
sum 3015

Table 6.1: List of isotopes produced from spallation. This calculation is by FLUKA [20]. The isotopes labeled
? are employed in fitting in Eq. 6.3. From Ref. [1]
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Figure 6.2: Schematic diagram of spallation cut.

• Ores: Residual charge of the muon, which means Ototal −Qunit × Lµ, where Qtotal is the total charge
of muon, Qunit is the total charge divided by the track length and Lµ is reconstructed track length of
the muon.

Muon reconstruction is not reliable in cases that muons deposit a very large mount of energy in the tank
because ADC counts are saturated. The spallation likelihood functions therefore are defined with two ways:
for a successful muon track reconstruction,

Lspa(∆L,∆T,Qres) = L∆L
spa(∆L,Qres)× L∆T

spa(∆T )× LQresspa (Qres), (6.1)

for a failed muon reconstruction,

Lspa(∆L,∆T,Qres) = L∆T
spa(∆T )× LQtotalspa (Qtotal), (6.2)

where L∆L
spa(∆L,Qres), L

∆T
spa(∆T ), LQresspa (Qtotal) are likelihood functions.

Figure 6.3 shows ∆L distribution from spallation candidates and Figure 6.4 shows Qres distribution,
which are employed to determine L∆L

spa(∆L,Qres) and LQresspa (Qtotal), respectively. In the spallation cut, muon
tracks 100 s before each low energy event are scanned and the muon with the maximum likelihood is selected.
Figure 6.5 shows ∆T distributions from spallation candidates. These distributions are fitted with the function
defined as

L∆T
spa(∆T ) =

7∑
i=1

Ai

(
1

2

)− ∆T

τi
1/2

, (6.3)

where τ i1/2 is the half-life of typical radioactive isotopes which are the isotopes labeled ? in Table 6.1 and
Ai is normalization factors. Figure 6.6 shows the maximum likelihood value for data and a random sample
which consists of randomly shuffled events in time. Events on the right side of cut lines are cut. From
Figure 6.6, random samples, which are located near to muon tracks are cut accidentally. This effectively
reduces supernova event efficiency. The dead volume is evaluated for the vertex ~p = (x, y, z) via the formula
below,

Dead vol. = 5.0891×
[
1− (0.79143− 9.3206× 10−6z + 9.8724× 10−9z2

+3.0075× 10−12z3 + 1.6359× 10−15z4 − 2.6618× 10−19z5 − 6.3656× 10−23z6)
]

×
[
1−

(
0.77799 + 1.8903× 10−8(x2 + y2) + 2.2175× 10−14(x2 + y2)2

)]
. (6.4)
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The total dead volume of the ID is about 20%.

6.2.3 Time difference cut

In low energy analyses, a time difference cut is also employed to reduce spallation events. Events whose time
difference tdiff is within 50µs after previous events are rejected by the time difference cut. The cut does
not significantly reduce spallation events more than the spallation cut however it can reject fast decay events
such as electrons from stopping muons or the decays of, 13O and 11Li regardless of goodness of muon track
reconstruction. This cut does not affect supernova neutrinos because the event rate from supernovae at the
center of our galaxy is 2.5 kHz at most giving an average shortest interval of 300µs from Figure 4.15.
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Figure 6.3: ∆L distribution for each Qres (1) Qres2.4× 104 p.e.(2) 2.4× 104Qres4.8× 104 p.e.(3) 4.8× 104 <
Qres9.7× 104 p.e.(4) 9.7× 104Qres4.8× 105 p.e.(5) 4.8× 105Qres9.7× 105 p.e.(6) 9.7× 105p.e. < Qres. The
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6.3 Cluster dimension

Spallation clusters are likely to distribute along muon tracks or as small collections while supernova clusters
should be uniformly distributed. Spallation and supernova clusters can be distinguished by concentrating on
their morphology. To realize this the ”so-called” dimension fit is employed.
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6.3.1 Dimension fit

The dimension fit calculates average residuals from the centroid of a cluster, a line or a plane which contains
the centroid and categorizes clusters into 4 types using the average residual: point-like, line-like, plane-like
and volume-like. Figure 6.7 shows schematic diagrams of each dimension fit. Each dimension fit measures
distances from vertexes to the centroid of a cluster, to evaluate the chi-square which is the sum of the squared
distances. Dimension is determined from comparison of the chi-squares. Note that there is not “volume-like
fit”. If the other ”three other dimension” fits do not work well for a cluster, the cluster is categorized as
volume-like.

The dimension fit’s mathematics is as follows. At first, we assume a cluster of N three-dimensional points
~di in the tank. We define the average vector

~d0 =
1

N

N∑
i=1

~di (6.5)

and the covariance matrix

C =
1

N

N∑
i=1

(
~di − ~d0

)(
~di − ~d0

)
=

1

N

N∑
i=1

~di~di − ~d0
~d0, (6.6)

where C has orthogonal eigenvectors n̂1,2,3 and real eigenvalues λ1 < λ2 < λ3, since C is a real symmetric
matrix. The trace of C is

Tr C = λ1 + λ2 + λ3 =
1

N

N∑
i=1

~di · ~di − ~d0 · ~d0 (6.7)

(i) to fit a single point ~x0 we define the χ2

χ2
point =

N∑
i=1

(
~di − ~x0

)2

(6.8)

We minimize by differentiating χ2 with respect to ~x0

N~x0 −
N∑
i=1

~di = 0 (6.9)
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Figure 6.7: Schematic diagram of dimension fit. The top is point-like fit and the middle is line-like fit and the
bottom is plane-like fit. Note that “volume-like fit” dose not exist. The blue markers are vertexes of events.
The yellow crossed markers are the centroids of clusters. The arrows indicate distance di from vertexes to a
centroid (point-like) a line (line-like) and a plane (plane-like).
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The minimum χ2 is
χ2

point,min = NTr C = N (λ1 + λ2 + λ3) . (6.10)

(ii) to fit a line, we parameterize the line as ~x = ~x0 + αn̂ where n̂ · n̂ = 1 and ~x0 · n̂ = 0. The χline
2 is

χ2
line =

N∑
i=1

(
~di − ~x0

)2

−
N∑
i=1

(
~di · n̂

)2

. (6.11)

We minimize the χ2
line under the two constraints n̂ · n̂ = 1 and ~x0 · n̂ = 0. The minimum value is

χline,min = N (λ1 + λ2) (6.12)

(iii) to fit a plane, we define the plane as ~x · n̂ = α0. The χ2
plane is

χ2
plane =

N∑
i=0

(
~di · n̂− α0

)2

. (6.13)

We minimize under the constraint of n̂ · n̂ = 1 and we obtain

χ2
plane,min = Nλ1 (6.14)

We evaluate dimension comparing these χ2 values and choose the dimension indicated with the smallest of
χ2

min from point-like to plane-like. If the smallest χ2
min is higher than 30,000, the dimension is 3 or volume-like.

6.4 Cluster examples

6.4.1 Vertex distributions

Figures from 6.8 to 6.11 show event cluster distributions of spallation and supernovae for each dimension.
Spallation clusters are extracted from 200 days of real data with time windows in Table 8.4 and cut criteria
in Table 8.2. The reason why these clusters are regarded as spallation clusters is because these clusters
vanish after application of the spallation cut in §6.2. Muon tracks whose spallation likelihood correlated
with events in clusters is highest are displayed together. Supernova vertexes are put in the tank at random.
Their time distributions are shown in the next section 6.4.2. The upper panels show the vertex distributions
and the time distribution for spallation clusters and the lower panels show those for supernova clusters.
The point-like spallation cluster distribution closely gets together along a muon track in Figure 6.8 and
the line-like spallation cluster distributes longer along a muon track in Figure 6.9 while supernova clusters,
especially the volume-like cluster more uniformly distribute in the tank. However, spallation clusters can be
categorized into plane-like or volume-like as seen from Figure 6.10 and Figure 6.11 in the case that some
muons produce spallation events in a short time at spearated locations in the tank. These clusters are likely
to be misidentified as supernova clusters.

6.4.2 Time and energy distributions

Figure 6.12 shows the time evolution of the average energy of the spallation clusters and the evolution is
almost flat as expected from physical considerations. The time evolution of supernova clusters decreases as
time as shown in Figure 4.19. Figures from 6.13 to 6.16 show time and energy distributions of each event in
clusters. Energy and time of supernova events are decided following the long time simulation (Mori model)
in Chapter 3. All these plots correspond to vertex plots in the previous section 6.4.1. As seen from these
figures, it seems that time distributions do not differ between spallation and supernova clusters while energy
distributions of supernovae are likely to be higher than those of spallation.
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Figure 6.8: Events from a point-like spallation (supernova) cluster are shown in the top (bottom) panels.
The left panels are xy distributions and the right panels are xz distributions. The blue triangle markers show
the centroids of the cluster. The red line shows muon track. The black circles (left) and boxes (right) are
the boundary of the FV.
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Figure 6.9: Same as Figure 6.8 except for displaying line-like clusters. The blue line shows fitted line from
the line-like fit of Eq. 6.11.
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Figure 6.10: Same as Figure 6.8 except displaying plane-like clusters.
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Figure 6.11: Same as Figure 6.8 except displaying volume-like clusters.
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Figure 6.12: Time evolution of average energy of spallation clusters.
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Figure 6.13: Time and energy distribution of point-like clusters in Figure 6.8. The left panel is a spallation
cluster and the right panel is a supernova cluster. The vertical axis is event energy and the horizontal axis
is time measured from the first events.
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Figure 6.14: Time and energy distribution of line-like clusters in Figure 6.9. The axes are the same as
Figure 6.13
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Figure 6.15: Time and energy distribution of plane-like clusters in Figure 6.9. The axes are the same as
Figure 6.13
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Figure 6.16: Time and energy distribution of volume-like clusters in Figure 6.9. The axes are the same as
Figure 6.13.

6.5 Summary

This chapter described event clusters, which could become supernova burst signals, spallation, which is
background for supernova burst search, and dimension fit, which is a method to evaluate cluster uniformity.
We would be able to distinguish supernova clusters and spallation clusters due to the feature that supernova
clusters are likely to uniformly distribute in the tank while spallation clusters are likely to distribute along
muon tracks. In addition, the feature that supernova clusters tend to be higher in energy than spallation
clusters is also useful. The specific method to distinguish clusters will be described in Chapter 8.
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Chapter 7

Fiducial Volume Expansion

7.1 Motivation

SK analyses normally employ 22.5 kton volume defined as the region more than 2 m away from the ID wall
as a fiducial volume (FV) to ensure event reconstruction goodness and to avoid background contamination
like radioactive decay from the detector materials. Though background contamination is a large problem
especially for low energy analyses, supernova burst analyses can potentially use the whole volume of the ID,
that is 32.5 kton, because it is easy to discriminate supernova events from background events due to the large
number of events expected in a short period of time (∼10 s). This chapter discusses the criterion for analyses
outside the normal FV for supernova bursts.

7.2 Method

MC simulations and SK taken data are employed for evaluation of the region outside the standard FV. Two
kinds of MC simulations are used: mono-energetic simulation in §7.3 and supernova event simulation in
§7.5. Section 7.4 describes the analysis of real data taken at SK. Finally, section 7.6 shows a comparison of
supernova events and background events and criteria to analyze the volume outside the FV for supernova
bursts. Here, we use the coordinate system in Figure 5.14 as well.

7.3 Mono-energetic event simulation

First, evaluation of outside of the FV with mono-energetic MC simulations is shown. These MC simulations
include 60,000 mono-energetic electrons which are uniformly distributed in the ID, 5 MeV, 10 MeV, 15 MeV,
20 MeV, 26 MeV and 30 MeV, which are typical supernova event energies.

7.3.1 Vertex distribution

Figures 7.1 and 7.2 show vertex distributions of vertex in the tank. Comparing true vertex distributions
and reconstructed distributions, the distributions similar to each other in the FV while the number of recon-
structed vertexes decreases outside the FV and some of the events are out of the ID. These events out of the
ID show the event reconstruction failed and their energy and ovaQ are assigned artificial values so as not
to influence analyses. There are peaks at the outermost parts in the histograms of reconstructed vertexes
in Figure 7.1 and 7.2. These peaks are collections of events that are reconstructed beyond the limit of the
reconstruction algorithms.

Figure 7.3 shows differences between true and reconstructed vertexes as functions of dwall shown in
Figure 5.16. The figure shows reconstruction precision does not change outside the FV compared to that
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inside the FV and the precision is better as energy becomes high. The precision of the reconstruction is
stable within 50 cm outside the FV for all energies, which is almost the same as those inside the FV.

Tables 7.1 and 8.3 summarize the number of events inside and outside the FV and shows more than 95%
of events are correctly reconstructed inside the FV for events generated inside the FV for all energies while
30% of events fail to be reconstructed for events generated outside the FV. However events which succeed to
be reconstructed are correctly outside the FV.

Energy True inside events Reconstructed inside Reconstructed outside Failed to be reconstructed
5 MeV 41396 39459(0.953) 1450(0.035) 487(0.012)
10 MeV 41394 40172(0.970) 942(0.023) 280(0.007)
15 MeV 41190 40018(0.972) 872(0.021) 300(0.007)
20 MeV 41450 40256(0.971) 895(0.022) 299(0.007)
26 MeV 41397 40171(0.970) 927(0.022) 299(0.007)
30 MeV 41416 40139(0.969) 979(0.024) 298(0.007)

Table 7.1: Event summary inside the FV for mono-energetic electron simulations. The values in the paren-
theses are the ratio to the number of true events.

Energy True outside events Reconstructed inside Reconstructed outside Failed to be reconstructed
5 MeV 18604 1713(0.092) 10113(0.544) 6778(0.364)
10 MeV 18606 933(0.050) 12039(0.647) 5634(0.303)
15 MeV 18810 790(0.042) 12613(0.671) 5407(0.287)
20 MeV 18550 704(0.038) 12713(0.685) 5133(0.277)
26 MeV 18603 649(0.035) 12829(0.690) 5125(0.275)
30 MeV 18584 616(0.033) 12930(0.696) 5038(0.271)

Table 7.2: Event summary outside the FV for mono-energetic electron simulations. The values in the
parentheses are the ratio to the number of true events.

7.3.2 ovaQ distribution

This subsection shows ovaQ distribution as functions of r2, which is defined in Eq. 5.8. In Figure 7.4, ovaQ
is higher, that is, event goodness is better, as energy is higher. The value of ovaQ keeps constant in the FV
and a little decreases as close to the wall of the ID for all energies. Normally the threshold of ovaQ > 0.25
is used for low energy analyses [1, 83] to distinguish good events from the background and bad events. The
distribution of ovaQ is flat around for 5 MeV events and around 0.5 for 30 MeV events inside the FV and
keep the same values even outside FV. The average value for 30 MeV outside the FV keeps the values above
0.4, which is higher than the value for 5 MeV inside the FV. Even outside the FV the MC is well above this
threshold.

7.3.3 Energy distribution

Here, the average of reconstructed energy as functions of r2 are shown in Figure 7.5. Averages of reconstructed
energy reproduce their true values in the FV while the average energies decrease outside the FV. Figures 7.6
and 7.7 show event distributions in the plane of reconstructed energy and ovaQ. As seen Figures 7.6 and 7.7,
the trend that events with smaller ovaQ is lower in energy and the distributions of the outside of the FV
spread into lower energy than those of the inside. The centers of distributions correspond to the true energies
both inside and outside the FV. This implies that enough good events outside the FV can be employed for
supernova analyses because the ovaQ values and the precision of the reconstruction shows the outside events
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Figure 7.1: The histograms of true (black) and reconstructed (red) events. The horizontal axes are the
squared radius. The dashed black and red lines show the boundaries of the FV and ID, respectively.
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Figure 7.2: The histograms of true (black) and reconstructed (red) events of monochromatic electrons MC
simulations. The horizontal axes are z. The dashed black and red lines show the boundaries of the FV and
ID, respectively.
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Figure 7.3: Difference from true vertexes. The vertical axis is difference between true and reconstructed
vertexes and the horizontal axis shows dwall in Figure 5.16. The black line is the boundary of the FV.
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Figure 7.4: ovaQ as functions of r2. The horizontal axes are z. The dashed black and red lines show the
boundaries of the FV and ID, respectively. The error bars mean the standard error of each bin.
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which are correctly reconstructed have nearly the same goodness as the inside events. If supernova events
can be distinguished from background events, it is possible that the events outside the FV are included in
supernova analyses.

7.4 Data analysis

Second, the analysis of data taken during the SK-IV period is shown. Two physics runs are used for this
analysis, whose run number is 068350 and 077557. The 068350 run is a typical normal run in the middle
of the SK-IV period while the 077557 run is a convection run at the end of the SK-IV period, which is
employed for the influence of the convection. In the convection period, the water is artificially convected in
the entire tank. Impurities which is near the bottom and the wall are likely to spread throughout the tank.
Run properties are summarized in Table 7.3. Here, it is assumed that these runs do not contain supernova
neutrinos.

Run number 068530 077557
Run mode Normal Normal
Start time Mon. Aug. 1 18:16:51 2011 Thu Feb 8 13:40:38 2018
End time Tue. Aug. 2 17:56:47 2011 Fri Feb 9 13:41:11 2018

End comments 24 hours 24h run complete
Type Typical Convection

Table 7.3: Summary of analyzed run.

7.4.1 Vertex distribution

Figure 7.8 shows event vertex distributions of the SK runs. As seen from these figures, it is clear that there
are a lot of background events outside the FV. From Figure 7.9 and the left panel of Figure 7.10, there are
more background events down the ID than up the ID because water is slowly converted in the lower region of
the tank even in normal operation. Figure 7.10 shows the shapes of background distributions are not different
between typical run (run:068530) and convention run (run:077557), so the convection period mostly impacts
the background rate. The convection is supposed to spread impurities near the tank wall and materials into
the entire tank. This is why the background rate of the convection period is higher than that of a typical
run.

7.4.2 ovaQ distribution

Figure 7.11 shows ovaQ, defined as Eq. 5.8, distributions as functions of r2. There are a lot of events below
ovaQ of 0.30. Events widely distributes from 0.5 down to 0. Also these figures show a lot background events
around ovaQ = 0.2 outside the FV. The ovaQ distributions inside the FV are flat. The normal ovaQ = 0.25
cut reduce 50% events inside the FV and 19% events outside the FV.

7.4.3 Energy distribution

Figure 7.12 shows total energy distributions of which horizontal axis is r2. Events below 5 MeV are cut by the
reconstruction algorithm because there are a large number of background events and few supernova events
below 5 MeV. Almost all events are located around 5 MeV and outside the FV. Moreover the event rate of
5 MeV outside the FV is higher by three orders of magnitude than the 10 MeV event rate inside the FV.
However there are some events above 10 MeV both inside and outside the FV.

Figure 7.13 shows the distributions in the plane of ovaQ and energy inside and outside the FV and before
and after spallation cut for the inside distributions. Note that spallation cuts currently cannot be applied
outside the FV due to high background rates. From the top of Figure 7.13, the top panels, which is inside
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Figure 7.5: Energy as functions of r2. The horizontal axes are z. The dashed black and red lines show the
boundaries of the FV and ID, respectively. The error bars mean the standard error of each bin.
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Figure 7.6: Event distributions in the plane of energy and ovaQ. The left column is for events generated
inside the FV and the right panel is for those outside the FV. The top is 5 MeV, the middle is 10 MeV and
the bottom is 15 MeV.
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Figure 7.7: Same as Fig. 7.6 except that plots of 20 MeV, 26 MeV and 30 MeV are shown.
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Figure 7.8: Vertex distributions in the plane of x and y.
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Figure 7.9: Vertex distributions in the plane of r2 and z.
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Figure 7.10: Vertex distributions in the plane of r2 and z. The black dashed lines are the boundary of the
FV and the grey dashed lines are the boundary of ID.
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Figure 7.11: Event distributions in the plane of r2 and ovaQ. The left panel is the typical run (run:068530)
and the right panel is the convection run (run:077557).

of the FV, show events higher than 10 MeV are located only above ovaQ = 0.2. In the middle panels, which
show the inside after spallation cut, there are distributions only above 0.2 ovaQ. This is because a spallation
cut software automatically cuts below 0.2. The middle panels show spallation cut considerably reduces events.
Finally, comparing the top panels and the bottom panels, which are the distributions outside the FV, the
shapes of distributions are similar. That is why the standard ovaQ > 0.25 cut is also useful for the outside
of the FV.
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Figure 7.12: Event distributions in the plane of r2 and energy. The left panel is the typical run (run:068530)
and the right panel is the convection run (run:077557).

7.5 Supernova event simulation

Third, supernova simulations are performed to evaluate the influence of events outside the FV. This evaluation
employs two supernova models: Mori model 3 and Nakazato model [17]. The neutrino luminosity and average
energy of the Mori model are shown in Figure 4.8 and Figure 4.9 in §4.2. Those of the Nakazato model are
shown in Figure 7.14. We consider only IBD in §4.3.1. It is found that there are more neutrino events from
the Nakazato model than the Mori model because the average energy of the Nakazato model is overall higher.
The supernova distance is assumed 1 kpc from the earth in order to increase statistics. The dependence of
ovaQ and energy on the distance to the inner wall is evaluated as well.
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Figure 7.13: Event distributions in the plane of ovaQ and energy. The left panel is the typical run (run:068530)
and the right panel is the convection run (run:077557). The top is the inside of the FV before spallation cut,
the middle is the inside of the FV after spallation cut and the bottom is the bottom is the outside of the FV.
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Figure 7.14: Luminosity (left) and average energy (right) of neutrinos from the Nakazato model [17].

7.5.1 Vertex distribution

Supernova events will be uniformly distributed in the tank. That is why supernova events are generated
uniformly in the tank as seen from the left panels of Figure A.5 and Figure A.6. More reconstructed events
are likely to be inside the FV than outside the FV because events generated outside of the FV tend to fail
to be reconstructed. These figures also show the reconstructed distributions outside the FV decrease as
approaching the inner wall and the failed events collect and make peaks outermost.
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Figure 7.15: The histograms of true (black) and reconstructed (red) events. The horizontal axes are z. The
dashed black and grey lines show the boundaries of the FV and ID, respectively. The left is the Mori model
and the right is the Nakazato.

7.5.2 ovaQ distribution

Figure 7.18 shows 2D histograms of ovaQ and r2. As seen from Figure 7.18, the distribution is almost the
same as inside the FV and the value a little decreases outside the FV. There is no difference between the
Mori model and the Nakazato model. The mean value of ovaQ is around 0.45 and most events above 0.3
and a few events below 0.25, where the events are regarded as poorly reconstructed. The ovaQ cut of 0.25
threshold reduce 1% events inside and outside the FV for the Mori model and also the Nakazato model. The
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Figure 7.16: The histograms of true (black) and reconstructed (red) events. The horizontal axes are r2. The
dashed black and gray lines show the boundaries of the FV and ID, respectively. The left is the Mori model
and the right is the Nakazato.
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Figure 7.17: Difference from true vertexes for monochromaic electron MC. The vertical axis is difference
between true and reconstructed vertexes and the horizontal axis shows dwall in Figure 5.16. The left is the
Mori model and the right is the Nakazato.

Model True inside events Recostructed inside Reconstructed outside Failed to be reconstructed
Mori model 126067 121203(0.961) 3598(0.029) 1266(0.010)

Nakazato model 177847 171491(0.964) 4785(0.027) 1571(0.009)

Table 7.4: Event summary inside the FV for supernova MC simulations. The values in the parentheses are
the ratio to the number of true events.

Model True outside events Reconstructed inside Reconstructed outside Failed to be reconstructed
Mori 55987 2792(0.050) 35447(0.633) 17748(0.317)

Nakazato 78738 3706(0.047) 50612(0.643) 24420(0.310)

Table 7.5: Event summary outside the FV for supernova MC simulations. The values in the parentheses are
the ratio to the number of true events.
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goodness of events of the Nakazato model is somewhat likely to be better than the Mori model because the
average energies of neutrino of the Nakazato model are higher than those of the Mori model.
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Figure 7.18: Event distributions in the plane of r2 and ovaQ. The left panel is the Mori model and the right
panel is the Nakazato Model.

7.5.3 Energy distribution

Figure 7.19 shows energy distribution of which horizontal axis is r2. Now, the energy threshold of 5 MeV
is set because of a fitter employed in this analysis. Most events are located from 6 MeV to 20 MeV for the
Mori model and the Nakazato model. However the distribution of the events of the Nakazato model shifts
higher than the Mori model as a whole because of the higher average energies. That is why there are more
events above 30 MeV for the Nakazato model. Inside the FV, reconstructed energy keeps the same value and
decreases a little outside the FV. This decrease becomes large as event energy becomes higher.

The correlation of ovaQ and energy inside and outside the FV for both models is shown in Figure 7.20.
The value of ovaQ is higher than 0.25 as higher energy than around 15 MeV while there are a few events
whose ovaQ is lower than 0.25 above 20 MeV outside the FV. Note that there are more events whose ovaQ
is lower than 0.25 outside the FV for the Nakazato model because the Nakazato model leads to more events
than the Mori model at the same distance.

Figure 7.21 shows the time evolutions of supernova neutrino events as well as Figure 4.25 in §4.2. The
difference from Figure 4.25 is that detector responses are fully considered here. In Figure 7.21, the average
energy of events inside the FV is higher than the theoretical curve by 0.5 MeV on average. The upper shift
is due to the effect of the electron and positron pair annihilation. Note that this annihilation creates 1 MeV
gamma rays in total however not all photons are detected. Comparing average energies inside and outside
the FV, the average energies outside the FV are overall lower than those inside the FV as expected from
Figure 7.5 and Figure 7.19. This difference is about 1 MeV for both models and is comparable to statistical
deviations of far supernovae of Figure 4.25. Figure 7.21 denotes that events outside the FV can also employed
for supernova analysis.

7.6 Comparison of SN and BG distribution

Finally, the distributions of supernova and background events are compared. Figure 7.22 shows the ovaQ
distributions inside and outside the FV and those histograms are normalized to the number of events for
20 s. Distances of supernova are assumed 50 kpc and 100 kpc. Inside the FV before spallation cut, both
distributions of supernova and background events are clearly separated around 0.25. event rates of 50 kpc
supernovae are several times higher than those of background and the event rates of 100 kpc supernovae are
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Figure 7.19: Event distributions in the plane of r2 and energy. The left panel is the Mori model and the
right panel is the Nakazato Model.
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Figure 7.20: Event distributions in the plane of ovaQ and energy. The left is outside of the FV and the right
is inside of the FV. The top panel is the Mori model and the bottom panel is the Nakazato Model.
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Figure 7.21: The same as the top-left plot of Fig. 4.25 in $4.2. However, these plots consider full detector
responses and events are split into inside (black) and outside (grey) events. The left is the Mori model and
the right is the Nakazato model.

comparable to those of background. Inside the FV after spallation cut, there is hardly any background events
between 0.2 and 0.3 while the supernova rates just reduce only 20% events due to the dead volume of Eq. 6.4.
Outside the FV, the shapes do not largely vary from those inside the FV while the background events are
more than supernova events at 50 kpc. However the event rates of supernovae are higher in the high ovaQ
regions.

Figure 7.23 shows a comparison of event rates of supernovae at 50 kpc and 100 kpc and background rates.
As seen from these plots, the background rates rapidly decrease as energy is higher while supernova rates has
a relatively wide peak around 15 MeV, which stretches to higher energy regardless of inside and outside the
FV both before and after the spallation cut. The right panels of Figure 7.23 are the number of events for
20 s as a function of energy threshold. Inside FV, the amount of background is extremely small even before
the spallation cut. Even with the 5 MeV threshold, the number of background events for 20 s is fewer than
1. The spallation cut can considerably reduce background event to 10% while it definitely also reduce 20%
of supernova events and above 5.5 MeV the event rates is lower than 0.1 event for 20 s.

Outside the FV, the background rate is higher than or comparable to the supernova rate around the
5 MeV threshold. The background rate however steeply goes down and the number of the background events
for 20 s is smaller than 1 above 8 MeV. In addtion, there is effectively no background above 15 MeV.

7.7 Results

The standard ovaQ > 0.25 cut is useful for events generated outside the FV because a large part of background
events is removed while most supernova events remain from Figures 7.13, 7.20 and 7.22. Table 7.6 and
Table 7.7 shows cut criteria for whole volume analyses for galactic supernovae and distant supernovae,
respectively. For galactic supernova analyses, which produces more events than 2,000 for several tens seconds,
the standard 0.25 ovaQ cut, 5MeV cut and no spallation cut is proper inside the FV and the standard 0.25
ovaQ cut and 8 MeV cut is proper outside the FV because the expected number of background events in
20 s is less than 1. For distant supernovae, which may produce only a few events in SK, we require more
strict cut criteria which provide a near background free environment. The standard 0.25 ovaQ cut, 5.5 MeV
cut and spallation cut are proper inside the FV and the standard 0.25 ovaQ cut and 15 MeV cut is proper
outside the FV because the expected number of background events in 20 s is less than 0.1 inside the FV and
around 10−3 outside the FV. Note that the energy cut criterion for outside of the FV is more strict in order
to reduce spallation events. The time difference cut described in §6.2.3 is applied for inside and outside the
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Figure 7.22: Histograms of ovaQ. The top is histograms inside of the FV after spallation cut, the middle is
those inside of the FV after spallation cut, the bottom is those outside the FV. the black lines are background,
the red lines are the Mori model and the blue lines are the Nakazato model.
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Figure 7.23: Histograms of energy (left) and total event number as a function of energy threshold (right),
whose ovaQ is higher than 0.25. The top is histograms inside of the FV after spallation cut, the middle is
those inside the FV after spallation cut, the the bottom is those outside the FV. the black is the background,
the red is the Mori model and the blue is the Nakazato model. The left column is
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FV in both cases of galactic and distant supernovae. Table 7.8 and Table 7.9 show event reductions by each
cut. From this table, each cut can reduce more background events than supernova events.

Table 7.10 and shows the number of events allowed to be analyzed of a galactic supernova at 1 kpc for the
Mori model and Nakazato model inside and outside the FV applied above the galactic supernova cut criteria
and Table 7.11 shows for distant supernova cut criteria as well. The number of events regarded as supernova
events inside the FV is just 60% however we can increase more than 80% with employing outside of the FV.

Inside the FV Outside the FV
Time difference cut tdiff > 50µs tdiff > 50µs
Fitting quality cut ovaQ > 0.25 ovaQ > 0.25

Energy cut total energy > 5.0 MeV totalenergy > 8.0 MeV
Spallation cut Not applied Not applied

Table 7.6: Cut criteria for galactic supernovae

Inside the FV Outside the FV
Time difference cut tdiff > 50µs tdiff > 50µs
Fitting quality cut ovaQ > 0.25 ovaQ > 0.25

Energy cut total energy > 5.5 MeV total energy > 15.0 MeV
Spallation cut applied Not applied

Table 7.7: Cut criteria for distant supernovae
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Background (Run:068530)
Total events (whole volume) 206895

Inside the FV Outside the FV
Total events 40215 166680

Time difference cut 40192(99.9%) 166585(99.9%)
Fitting quality cut (ovaQ > 0.25) 2003(5.0%) 49155(29.5%)

Energy cut (energy > 5.0 inside FV, energy > 8.0 ouside FV) 2003(5.0%) 1251(0.8%)

Background (Run:078530)
Total events (whole volume) 320151

Inside the FV Outside the FV
Total events 58658 261493

Time difference cut 58595(99.9%) 261219(99.9%)
Fitting quality cut (ovaQ > 0.25) 2830(4.8%) 78292(29.9%)

Energy cut (energy > 5.0 inside FV, energy > 8.0 ouside FV) 2830(4.8%) 1327(0.5%)

Supernova (Mori model)
Total events (whole volume) 182054

Inside the FV Outside the FV
True events 126067 55987

Reconstructed events 123995(98.4%) 39045(69.7%)
Time difference cut - -

Fitting quality cut (ovaQ > 0.25) 119521(94.8%) 37336(66.7%)
Energy cut (energy > 5.0 inside FV, energy > 8.0 ouside FV) 116277(92.2%) 31772(56.7%)

Supernova (Nakazato model)
Total events (whole volume) 256585

Inside the FV Outside the FV
True events 177847 78738

Reconstructed events 175197(98.5%) 55397(70.4%)
Time difference cut - -

Fitting quality cut (ovaQ > 0.25) 170772(96.0%) 53520(68.0%)
Energy cut (energy > 5.0 inside FV, energy > 8.0 ouside FV) 168183(94.6%) 48079(61.1%)

Table 7.8: Reduction summary for galactic supernovae. Cuts are applied from top in order. The values in
parentheses are the fraction to total events for backgrounds (true events for supernovae).
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Background (Run:068530)
Total events (whole volume) 206895

Inside the FV Outside the FV
Total events 40215 166680

Time difference cut 40192(99.9%) 166585(99.9%)
Fitting quality cut (ovaQ > 0.25) 2003(5.0%) 49155(29.5%)

Spallation cut 17358(4.3%) -
Energy cut (energy > 5.5 inside FV, energy > 15.0 ouside FV) 297(0.7%) 12(0.0%)

Background (Run:078530)
Total events (whole volume) 320151

Inside the FV Outside the FV
Total events 58658 261493

Time difference cut 58595(99.9%) 261219(99.9%)
Fitting quality cut (ovaQ > 0.25) 2830(4.8%) 78292(29.9%)

Spallation cut 947(0.2%) -
Energy cut (energy > 5.5 inside FV, energy > 15.0 ouside FV) 346(0.6%) 7(0.0%)

Supernova (Mori model)
Total events (whole volume) 182054

Inside the FV Outside the FV
True events 126067 55987

Reconstructed events 123995(98.4%) 39045(69.7%)
Time difference cut - -

Fitting quality cut (ovaQ > 0.25) 119521(94.8%) 37336(66.7%)
Spallation cut 95617(94.8%) -

Energy cut (energy > 5.5 inside FV, energy > 15.0 ouside FV) 91865(72.9%) 15396(27.5%)

Supernova (Nakazato model)
Total events (whole volume) 256585

Inside the FV Outside the FV
True events 177847 78738

Reconstructed events 175197(98.5%) 55397(70.4%)
Time difference cut - -

Fitting quality cut (ovaQ > 0.25) 170772(96.0%) 53520(68.0%)
Spallation cut 136618(76.8%) -

Energy cut (energy > 5.5 inside FV, energy > 15.0 ouside FV) 133554(75.1%) 27113(34.4%)

Table 7.9: Reduction summary for distant supernovae. Cuts are applied from top in order. The values in
parentheses are the fraction to total events for backgrounds (true events for supernovae).

Mori model Nakazato model
Total events 182054 256585

Inside the FV 116277 (63.87%) 168183 (65.55%)
Ouside the FV 36170 (19.87%) 52533 (20.47%)

Sum 152447 (83.74%) 220716 (86.02%)

Table 7.10: Supernova events after applied the galactic supernova cut criteria.
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Mori model Nakazato model
Total events 182054 256585

Inside the FV 91864 (50.46%) 133553 (52.05%)
Ouside the FV 15396 (8.46%) 27113 (10.57%)

Sum 107260 (58.92%) 160666 (62.62%)

Table 7.11: Supernova events after applied the distant supernova cut criteria.
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Chapter 8

Supernova burst search

This chapter describes about supernova burst search in SK as an application of the long time simulation in
§4 and the background investigation for the whole volume in §7.

8.1 Motivation

In SK, the real time supernova monitor is installed as described in §5.9. However this monitor has sensitivity
out to 200 kpc at maximum and has a detection probability of 1.0 only out to 100 kpc assuming the Livermore
model. If distant supernovae happen out of this range, this monitor may fail to alarm. Hence, more sensitive
offline analysis is necessary to investigate whether distant supernovae have occurred but were not detected.
The search in this section is optimized especially for distant supernova more than 100 kpc away.

8.2 Method

The search method is an upgrade on the previous burst search carried out in 2007 [21]. Event clusters are
searched as supernova burst signals as described in §6. However, this search has improved from the previous
study in several respects. The first improvement is to employ the new supernova models for cut parameter
optimization. So far the Livermore model was used to optimize supernova analyses in SK. However this model
is currently disfavored due to the following problems. For example it predicts that the average energies of
neutrino species increase during the late phases, though we expect them to decrease as the proto-neutron star
cools. Moreover, the Livermore model tends to overestimate the number of events, which is around 10,000
events, compared to recent models; for example the Nakazato model [17] predicts around 3,000 events. In
this search, more recent and realistic supernova models are employed.

The second improvement is the method used to distinguish supernova and spallation clusters. Dimension
fit categorization in § 6.3 and machine learning classification are employed. These methods are useful for
supernova identification in the case of small multiplicities.

The third improvement is the use of the whole ID volume of 32.5 kton based on the analysis method of
the outside of the FV in the previous chapter. If supernova candidate clusters are found in the conventional
fiducial volume, the search is expanded to include the whole ID volume to try and find more events and
obtain more information about the candidate.

8.2.1 Search procedure

The search procedure is as follows,

1. Extract events triggered by LOWE, see Table 5.3,

2. Reduce the events with the criteria in Table 8.2,
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3. Search for event clusters with the time windows in Table 8.4,

4. Apply the cluster cut to event clusters found at the previous step,

5. Apply the spallation cut to sub runs which include event clusters remaining in the signal regions,

6. Search again for event clusters after applying the spallation cut with the time windows in Table 8.4
and recalculate cluster variables in §8.2.6,

7. Check whether there is any problem around the time of the cluster remaining after the previous step
in the SK data logs,

8. Analyze the whole volume of the ID around the time of the clusters with the cut criteria in Table 8.3
if clusters remain after all cuts.

In this search, event cluster search is performed twice before and after application of the spallation cut
because the spallation cut is computationaly expensive. The reason for step 7 is because standard analyses
automatically reject runs which have various problems such as DAQ errors as bad runs. However supernova
bursts may also be rejected as bad runs due to a sudden increase in the trigger rate, so this bad run cut is
disabled in this search.

This analysis starts from “lomu” file, which is employed for normal low energy analyses in SK. The lomu
file already has loose cuts applied: reduction of unphysical events, loose fitting quality cut ovaQ > 0.20 and
loose FV cuts dwall > 100 cm. Thus, the lomu file cannot be employed for the whole FV analysis at the
last step. For the last step, “reformat” file is employed, which is prior to the lomu file and the start of all
analyses in SK and includes all triggered events.

8.2.2 Supernova models

Supernova models employed in this search is the Mori model in §3, the Nakazato supernova and failed
supernova models [17] and the Livermore model. For optimization of search and machine learning training,
the Mori model is employed because the Mori model predicts lower energies and fewer events than the
Nakazato model so that the search optimized for the Mori model is also sensitive to the Nakazato model.
1 Neutrino oscillation is also considered in the manner of §4.3.3. We consider only the IBD in §4.3.1.
Table 8.1 shows the expected number of events which react in the ID for each model assuming the distance of
supernova is 100 kpc from the earth. From this table, the Mori model predicts the smallest number of events,
the Nakazato model of a successful supernova predicts twice as many as the Mori model, the Livermore model
predicts more events than the Nakazato model and the failed supernova model predicts the largest number
of events, exceeding 100 events.

In this search 30,000 supernova clusters are produced following the Mori model with the normal mass
hierarchy. The number of events in the SN clusters is from 3 to 7, which corresponds to distant supernova
clusters from 100 kpc to 500 kpc.

8.2.3 Spallation samples

Spallation cluster samples are extracted from 204.80 days’ data taken during normal SK operation. These
runs are selected from normal runs at random throughout the SK-IV period. The cluster search is performed
with the event reduction in Table 7.9 and time windows in Table 8.4. It is assumed that all clusters in these
data are spallation clusters because 99% clusters vanish after application of the spallation cut.

1Note that the Livermore model is employed only for comparison to the previous study and not included in the final result
because it has some problems as described above.
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Model name (mass ordering) Number of events at 100 kpc
Mori(normal) 18.4
Mori(inverted) 18.6

Nakazato successful (normal) 35.0
Nakazato successful (inverted) 43.8

Nakazato failed (normal) 161.4
Nakazato failed (inverted) 103.7

Livermore (no osc.) 66.1

Table 8.1: Expected number of events which react in the ID full volume of 32.5 kton from 100 kpc supernovae.

8.2.4 Event Reduction

Cut criteria for distant supernova in §7.7 are employed. Those cut criteria are summarized in Table 8.2 for
inside of the FV and Table 8.3 for outside of the FV. The background efficiency is just 0.007 however the
efficiency for supernovae keep above 0.7 for all of the models. The efficiency for the Mori model is the lowest
and that for failed supernovae is higher because the Mori model has the lowest average energies while the
failed supernova model has the highest average energies. The Nakazato model leads to middle average energy
and efficiency. There is little difference between neutrino oscillations for the normal and inverted hierarchy.

Background Mori Mori Nakazato Nakazato Failed SN Failed SN
Normal Inverted Normal Inverted Normal Inverted

Time diff cut Tdiff > 50µs 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Fitting quality cut ovaQ > 0.25 0.050 0.964 0.965 0.977 0.979 0.987 0.987

Spallation cut 0.018 0.771 0.772 0.781 0.783 0.789 0.789
Energy cut total energy > 5.5 MeV 0.007 0.741 0.740 0.766 0.770 0.788 0.788

Table 8.2: Event efficiency inside the FV.

Background Mori Mori Nakazato Nakazato Failed SN Failed SN
Normal Inverted Normal Inverted Normal Inverted

Time diff cut Tdiff > 50µs 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Fitting quality cut ovaQ > 0.25 0.295 0.956 0.955 0.968 0.969 0.979 0.980

Energy cut total energy > 15 MeV <0.001 0.332 0.373 0.433 0.498 0.690 0.711

Table 8.3: Event efficiency outside the FV.

8.2.5 Time window

The three time windows for this event cluster search are shown in Table 8.4. By comparison to the previous
search, shown in the third column, the thresholds of the number of events is about half so that this search
can be sensitive to more distant supernovae. Note that at least 2 events are required for this search in cases.

8.2.6 Cluster cut

After searching event cluster, we apply additional cut called “cluster cut”. The cluster cut means separating
clusters into spallation (background) clusters and supernova (signal) clusters due to their parameters. In the
cluster cut, the number of events in clusters and cluster dimensions are employed. In addition, the next three
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Threshold of this search Threshold of the previous search Window length [s]
Time window 1 2 events 3 events 0.5
Time window 2 2 events 4 events 2
Time window 3 4 events 8 events 10

Table 8.4: Time windows and thresholds of the number of events of the search. The third column shows the
threshold of the number of events employed for the previous search [21].

parameters are also employed,

〈Ekin〉 =

∑Ncluster

i=1 Ei
Ncluster

, (8.1)

〈D〉 =

∑Ncluster−1
i=1

∑Ncluster

j=i+1 |~di − ~dj |
Ncluster

C2
, (8.2)

〈Γ〉 =

√√√√ 1

3 (Ncluster − 1)

Ncluster∑
i=1

(
~di − ~d0

)2

, (8.3)

where Ncluster shows the number of events included in a cluster, Ei shows the total positron candidate energy
of the ith event in a cluster, ~di shows the vertex of that event, and ~d0 = 1/Ncluster ×

∑Ncluster

i=1
~di shows the

centroid of the cluster, which was introduced in the dimension fit in §6.3. These parameters, 〈Ekin〉, 〈D〉
and 〈Γ〉 mean the average kinetic energy of positron candidates in a cluster, the average pairwise distance
between vertexes and the average residual distance of vertexes to the cluster centroid.

Spallation clusters are expect to have lower 〈Ekin〉 and smaller 〈D〉 and 〈Γ〉 than supernova clusters as
described in §6.2. Typically spallation cluster’s 〈D〉 is less than 1000 cm and 〈Ekin〉 is less than 10 MeV while
those of supernova clusters are larger these values. However, spallation clusters sometimes have 〈D〉 larger
than 2000 cm in the case that muon tracks produce spallation nuclei across the entire length of the SK ID
tank.

The procedure of the cluster cut is as follows: first, categorize clusters six cases due to their dimensions,
number of events and 〈D〉 and second separate clusters signal and background in the plane of 〈D〉 vs 〈Ekin〉
or 〈D〉 vs 〈Γ〉. One type of cluster cut is applied for volume-like and plane-like clusters, respectively. For
line-like clusters, clusters are split to two additional categories with the criterion whether the number of
events in clusters (multiplicity), Ncluster is more than 3. If the multiplicity of clusters is larger than 3, they
are classified into Line-like type A, otherwise classified into Line-like type B. Spallation cluster distributions
of Type A and B are different as seen from the middle of Figure 8.3. For point-like clusters, two cluster cuts
are employed as well whether cluster multiplicities are more than 3 or not. If multiplicities of clusters are
more than 3, they are categorized into point-like type B. In the case that multiplicities are equal to 2 or 3,
clusters are additionally split with the average pairwise distance 〈D〉. If 〈D〉 of clusters whose multiplicity is
equal to 2 or 3 is larger than 500 cm, they are classified into point-like type A, otherwise point-like type B as
well. Figure 8.1 shows the type A spallation clusters contaminate supernova clusters in the plane of 〈D〉 vs
〈Γ〉. The six categories and their criteria are summarized in Table 8.5 and Figure 8.2 shows the flow chart of
cluster cut categorization.

Figure 8.3 shows cluster distributions of spallation and supernovae in each cut plane. Here, spallation
clusters are made in the way described in §8.2.3 and supernova clusters are made in the way described in
§8.2.2. There are 9,175 spallation clusters and 30,000 supernova MC clusters in Figure 8.3 in total. Table 8.6
summarizes clusters in each cut plane of Figure 8.3 and shows the fraction of each dimension type relative to
the total number of clusters in that category. The fraction of clusters categorized into the volume-like type is
0.122 for supernova clusters and 0.003 for spallation clusters, which shows the volume-like classification is a
powerful cut for separating the spallation and supernova clusters. As seen from Figure 8.3, the distributions
of spallation and supernova clusters are separating each other. The next step is to classify the planes of
the cut categories into background regions and signal regions. Machine learning classification is adopted in
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Figure 8.1: Distribution of point-like clusters in the plane of 〈D〉 vs 〈Γ〉

Category
Volume-like Plane-like Line-like Line-like Point-like Point-like

Type A Type B Type A Type B
Cut variables 〈D〉 vs 〈Ekin〉 〈D〉 vs 〈Ekin〉 〈D〉 vs 〈Ekin〉 〈D〉 vs 〈Ekin〉 〈D〉 vs 〈Ekin〉 〈D〉 vs 〈Γ〉

Dimension Volume-like Plane-like Line-like Line-like Point-like Point-like
Ncluster - - ≥ 4 ≤ 3 - ≥ 4
〈D〉 - - - - ≤ 500 cm for Ncluster ≤ 3 ≥ 500 cm for Ncluster ≤ 3

Table 8.5: Six categories of cluster cut and cluster criteria for each category. The rows of and below the third
are cluster criteria for the cut category of its column.
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Figure 8.2: Flow chart of cluster cut categorization.

this study. Note that the point-like type B category provides model-independent cut because it does not use
energy information.

Volume-like Plane-like Line-like Type A Line-like Type B Point-like Type A Point-like Type B Total
Supernova clusters 3646(0.122) 14840(0.495) 2090(0.070) 7783(0.259) 1294(0.043) 347(0.012) 30000
Spallation clsuters 30(0.003) 3838(0.418) 282(0.031) 301(0.033) 15(0.002) 4709(0.513) 9175

Table 8.6: Number of clusters in each cut plane in Figure 8.3 The number in the bracket is the ratio to the
total.

8.2.7 Machine learning cluster cut

Scikit-learn2 is employed in this search. Scikit-learn is a free open source machine learning (ML) library for
the Python language. It provides various classification algorithms: support vector machines (SVM), logistic
regression (LR), Gaussian naive Bayes, nearest neighbors and so on. In this search SVC with polynomial
kernel [84], which is one of SVMs and LR [85] are employed because they provide the best scores without
overtraining.

Training samples and test samples are necessary for the machine learning. The former trains machine
learning models and the latter checks whether machine learning models are properly trained along with an
evaluation of performance. The training samples and the test samples must be different in order to avoid
overtraining. Basically more samples are better. The procedure of making samples is as follows: (i) split the
original supernova MC or spallation data samples such that 80% of the sample is used for training the model
and 20% is used for testing it and (ii) shift events in clusters in each parameter 〈D〉, 〈Ekin〉 and 〈Γ〉 by the
SK resolution following the Gaussian distributions to increase the statistics to 10 times.

2The library is publicly available at https://scikit-learn.org/stable/
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Figure 8.3: Cluster distributions in each cut plane of original cluster samples. The red is supernova clusters
and the black is spallation clusters. The horizontal axes are the average pairwise distance 〈D〉 and the vertical
axes except for point-like type B. The vertical axis for point-like B is the average residual distance 〈Γ〉
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As seen from Figure 8.3, the distributions of the spallation clusters and supernova clusters overlap between
around 10 MeV and 20 MeV. The classification is affected especially by the overlap and thus clusters are shifted
by the energy and position variances at 15 MeV. Figure 8.4 shows the reconstructed energy distribution and
the difference between the true and the reconstructed vertexes of spallation clusters. Note that the FV and
ovaQ > 0.25 cuts have been applied for these distributions. The Gaussian fitting to the energy distribution
shows the variance of the distribution is σ = 1.845 in the left panel of Figure 8.4. Here we assume the error
of 〈E〉 is the error of energy of events. In the right panel, the uncertainty of the vertex reconstruction is
defined as the difference to which the integral from 0 is 70%(≈ 1σ) relative to all area and is 35 cm. These

values are set as σ in the Gaussian distribution f(x) = C exp
(
− 1

2

(
x−µ
σ

)2)
, where C is the normalization

constant, µ is the original position of cluster in each cut plane. Figure 8.5 and Figure 8.6 shows spallation and
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Figure 8.4: Distribution of the reconstructed energy with gaussian fit (left) and the difference between the
true and the reconstructed vertexes of a monochromatic electron simulation (right). The integral from 0 to
the red line in the right panel is 70% of the total area.

supernova cluster distributions in each cut plane, of which number is summarized in Table 8.7 and Table 8.8,
respectively.

So as to evaluate machine learning performance, signal and background score are employed, where score
means the fraction of clusters in a given category which are correctly classified. Tables 8.9 and 8.10 show
signal and background scores for the SVC and LR in each category. Here total scores is the sum of scores
weighted by ratios of clusters in each category. The selection of ML models obeys as follows: select the
ML models with the highest background score and then if the background scores are the same, look at the
highest signal score. The selected ML models are the LR for volume-like and plane-like cut and SVC for the
other categories. The scores of the ML models are summarized in Table 8.11. Figure 8.7 shows signal and
background regions due to each ML model with test samples. As seen from Table 8.11 and Figure 8.7, it is
accomplished that the total signal score is 0.9185 while the total background score is 0.9942, respectively.

Volume-like Plane-like Line-like Type A Line-like Type B Point-like Type A Point-like Type B Total
Supernova clusters 29310(0.122) 118360(0.493) 16710(0.070) 62400(0.260) 10375(0.043) 2845(0.012) 240000
Spallation clusters 230(0.003) 30820(0.420) 2330(0.032) 2490(0.034) 112(0.002) 37418(0.510) 73400

Table 8.7: Same as Table 8.6 except that training samples in Figure 8.5 are shown.
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Figure 8.5: Same as Figure 8.3 except that training samples are displayed.

Volume-like Plane-like Line-like Type A Line-like Type B Point-like Type A Point-like Type B Total
Supernova clusters 7150(0.119) 30040(0.501) 4190(0.070) 15430(0.257) 2570(0.043) 620(0.010) 60000
Spallation clusters 70(0.004) 7560(0.412) 490(0.027) 520(0.028) 40(0.002) 9670(0.527) 18350

Table 8.8: Same as Table 8.6 except that training samples in Figure 8.6 are employed.
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Figure 8.6: Same as Figure 8.3 except that test samples are displayed.
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ML model Volume-like Plane-like Line-like Type A Line-like Type B Point-like Type A Point-like Type B Total
SVC Sig score 0.9365 0.9278 0.9107 0.8778 0.8790 0.9839 0.9133

Bg score 0.9714 0.9944 0.9939 0.9385 0.9500 0.9990 0.9950
LR Sig score 0.9512 0.9347 0.9375 0.9039 0.9455 0.9839 0.9299

Bg score 0.9714 0.9925 0.9898 0.9000 0.8500 0.9986 0.9926

Table 8.9: Scores of SVC linear and LR using test samples. The total scores are the sum of scores weighted
by the ratios in the brackets in Table 8.8

ML model Volume-like Plane-like Line-like Type A Line-like Type B Point-like Type A Point-like Type B Total
SVC Sig score 0.9315 0.9289 0.9196 0.8754 0.8630 0.9381 0.9119

Bg score 0.9696 0.9949 0.9901 0.9679 1.0000 0.9998 0.9963
LR Sig score 0.9457 0.9377 0.9387 0.9043 0.9329 0.9522 0.9300

Bg score 0.9609 0.9936 0.9867 0.9494 0.9821 0.9982 0.9941

Table 8.10: Scores of SVC Poly and LR using train samples. The total scores are the sum of scores weighted
by the ratios in the brackets in Table 8.8

Category
Volume-like Plane-like Line-like Line-like Point-like Point-like

Total
Type A Type B Type A Type B

ML model LR LR SVC SVC SVC SVC -
Signal score 0.9512 0.9347 0.9107 0.8778 0.8790 0.9839 0.9185

Fraction 0.1192 0.5007 0.0698 0.2572 0.0428 0.0103 1.0
Background score 0.9714 0.9925 0.9939 0.9385 0.9500 0.9990 0.9942

Fraction 0.0038 0.4120 0.0267 0.0283 0.0022 0.5270 1.0

Table 8.11: ML model combination for each cluster category and resulting scores. The Fraction rows show
the fraction of the corresponding sample in each category. The total column represents the sum of scores
weighted by those fractions.
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Figure 8.7: Machine learning classification for the models in Table 8.11 with test samples in Figure 8.6. The
blue regions are signal region and the white regions are background region. The vertical and horizontal axes
are the same as Figure 8.3.
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8.3 Background estimation

Even after the spallation cut event clusters are found in the cluster search because spallation cuts can not
remove all spallation events and non-spallation isotopes’ decaying for a short time can constitute a cluster.
Estimation of background rate after the spallation cut is performed with clusters remained after the spallation
cut. The spallation cut reduces 99% of clusters so that clusters are increased to 100 times with considering
the systematic errors in the same way as making ML samples in §8.2.7.

Figure 8.8 shows the distributions of clusters increased with considering systematic errors after the spal-
lation cut. Table 8.12 summarizes the number of background clusters in each category. The total background
clusters in the signal regions are 27. The effective livetime for this estimation is 204.80 days×100 = 20480 days
therefore the background rate after the spallation cut is

b =
27

20480 days
= 0.4812 year−1. (8.4)

Volume-like Plane-like Line-like Type A Line-like Type B Point-like Type A Point-like Type B Total
Bg score 0.9300 1.0000 1.0000 0.9750 - 1.0000 0.9959

Signal region 93 800 100 780 0 4800 6573
Background region 7 0 0 20 0 0 27

Total clusters 100 800 100 800 0 4800 6600

Table 8.12: Background cluster summary after the spallation cut.

8.4 Analysis demonstration

To evaluate the sensitivity of the search, Monte Carlo (MC) simulations are done. In the simulations a
thousand supernova MC simulations are made at an assumed distance. Supernova search demonstration is
then done following the procedure in §8.2.1 except for the last two steps.

The detection probability is defined as

Pdetect =
Ndetected

Nsim
, (8.5)

where Ndetected is the number of detected supernova simulations, Nsim is the total number of simulations.
Here “detected” means a simulation that includes at least one event cluster found with the procedure. The
left panel of Figure 8.9 shows the detection probability and the number of supernova events at an assumed
distance. The detection probability for all models is 1.0 out to at least 100 kpc. Further, this search keeps
a non-zero detection probability extending to larger distances than that of the previous study [21] with
a lower energy threshold. For the Mori model and Nakazato models the detection probability falls to a
few percent at around 500 kpc, which is the limit of the sensitivity of the present search. For the failed
supernova the detection probability extends out of 500 kpc and is 10% for the normal hierarchy and 4% for
the inverted hierarchy even at 1000 kpc because failed supernovae are generally likely to have much higher
neutrino luminosities and neutrino energies. The detection probability is listed for all models in Table 8.13.

The right panel in Figure 8.9 shows the number of detected events as functions of distance if supernovae
are detected with this search. The expected number of events at 100 kpc is 10 events for the Mori model and
20 events for the Nakazato model on average. This average curve does not follow an inversed squared law
with distance since two events or more are required for the definition of clusters in Table 8.4. The expected
number of events for all models is presented in Table 8.14.

8.5 Results

The full SK-IV period data, which is 3318.41 days of livetime, is used in this search. The livetime is the
sum of the time difference between the first event and the last event of each run. Note that the livetime is
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Figure 8.8: Background cluster distribution after the spallation cut with systematic errors.The vertical and
horizontal axes are the same as Figure 8.3.
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Figure 8.9: Detection probabitiy (left) and number of events (right)

Model 100 kpc 200 kpc 300 kpc 400 kpc 500 kpc 600 kpc 700 kpc 800 kpc 900 kpc 1000 kpc
Mori (Normal) 0.985 0.391 0.090 0.021 0.015 0.005 0.001 0.001 0.001 0.001
Mori (Inverted) 0.993 0.397 0.085 0.022 0.010 0.002 0.001 0.001 0.001 0.001

Nakazato (Normal) 1.000 0.842 0.361 0.109 0.027 0.011 0.002 0.002 0.001 0.001
Nakazato (Inverted) 1.000 0.936 0.467 0.162 0.055 0.016 0.003 0.003 0.003 0.002
Failed SN (Normal) 1.000 1.000 1.000 0.978 0.837 0.687 0.434 0.281 0.180 0.123
Failed SN (Inverted) 1.000 1.000 0.993 0.845 0.614 0.395 0.202 0.139 0.089 0.043
Livermore (No osc) 1.000 0.969 0.615 0.264 0.127 0.052 0.016 0.014 0.010 0.002

Table 8.13: Detection probability as a function of distance for each supernova model.

Model 100 kpc 200 kpc 300 kpc 400 kpc 500 kpc
Mori (Normal) 10.9 5.2 4.1 3.9 3.6
Mori (Inverted) 10.9 5.4 4.2 3.8 3.3

Nakazato (Normal) 18.2 7.2 5.3 4.4 3.9
Nakazato (Inverted) 23.2 8.3 5.7 5.0 4.6
Failed SN (Normal) 89.7 21.5 11.4 7.6 5.9
Failed SN (Inverted) 58.5 14.2 8.4 5.8 4.7
Livermore (No osc) 42.9 11.2 6.4 4.9 4.4

Table 8.14: Prediction of the number of events as a function of distance.
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longer than those of other analyses because this search includes so-called bad runs, which are not normally
employed.

Table 8.15 presents clusters in each category at the first event cluster before the spallation cut. There are
151,923 clusters in found at the first cluster search, including 362 volume-like clusters, 71 plane-like clusters,
4857 and 4753 categorized into line-like type A and B clusters and 186 and 80787 clusters categorized into
point-like type A and B clusters, respectively.

Figure 8.10 shows the cluster search results before and after the spallation cut. After the spallation cut,
there are 15 clusters remaining in the signal regions, 14 clusters of which are due to DAQ error and one of
which is non DAQ error cluster. Table 8.16 lists all clusters in the signal regions after the spallation cut.

Category signal region background region
Volume-like 2 360
Plane-like 71 60901

Line-like Type A 5 4852
Line-like Type B 93 4666
Point-like Type A 1 185
Point-like Type B 89 80698

Table 8.15: Summary of clusters before the spallation cut.

Cluster category 〈D〉 [cm] 〈Γ〉 [cm] 〈Ekin〉 [MeV] Ncluster Run state Run number Sub run number Event time Figure
Volume-like 1497 658 10.60 22 DAQ error 64313 695 2009/5/23 0:44:44 8.11
Volume-like 1570 677 23.61 8 DAQ error 65471 136 2009/9/23 9:44:17 B.1
Volume-like 1425 611 15.63 29 DAQ error 65475 135 2009/9/23 13:18:20 B.2
Plane-like 1271 363 48.63 7 DAQ error 64342 53 2009/6/3 12:15:58 B.3
Plane-like 1508 337 13.55 10 DAQ error 65471 129 2009/9/23 9:41:49 B.4
Plane-like 1389 396 19.69 24 DAQ error 65475 125 2009/9/23 13:14:43 B.5
Plane-like 1674 465 18.44 19 DAQ error 65477 140 2009/8/2/15:59:7 B.6
Plane-like 1494 508 69.00 56 DAQ error 67352 667 2010/8/17 2:13:41 B.7
Plane-like 1621 539 20.40 11 DAQ error 68117 402 2011/2/14 8:32:23 B.8
Plane-like 1545 77 17.12 4 DAQ error 72641 6 2014/5/10 23:28:51 B.9
Plane-like 2129 275 23.70 5 DAQ error 72664 1086 2014/5/18 9:20:30 B.10
Plane-like 1766 71 55.6 5 DAQ error 64869 133 2009/7/20 11:32:39 B.11

Line-like Type A 1476 539 12.23 8 DAQ error 65471 137 2009/9/23 9:44:54 B.12
Line-like Type B 2361 32 19.97 3 Normal 64801 593 2009/7/8 4:50:11 8.12
Point-like Type B 1822 788 46.18 17 DAQ error 68641 783 2011/8/30 0:52:28 B.13

Table 8.16: List of clusters after analysis cuts and their final classification. Run state labeled as DAQ error
have been associated with known problems in the data stream. The time format is Y/M/D h:m:s (JST).

8.6 Discussion

8.6.1 About clusters remaining in the signal regions

In the 15 clusters, 14 clusters were found in DAQ error runs and troubles indeed happened at the cluster
time and they are removed from the search by hand while one cluster was found in a normal run so it is
expected to be a physical cluster. However, this cluster is likely not to be a supernova cluster because it is
fitted with a line well in Figure 8.12.

The remaining cluster found in a normal run is composed of three events with energies (relative times):
5.79 (0 s), 9.35 (0.95 s), 44.77 MeV (0.8 s) for an 〈Ekin〉 of 19.97 MeV. The last two events are separated by
only 74 cm in the tank while the first event is separated from those two by more than 3500 cm, resulting in
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Figure 8.10: Results of data analysis. The blue regions are signal regions and the white regions are background
regions. The red markers are clusters in the signal regions and the black markers are clusters in the background
regions before the spallation cut. The yellow star markers are clusters in the signal regions after the spallation
cut. The vertical and horizontal axes are the same as Figure 8.3.
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Figure 8.11: Found cluster at the 1st row in Table 8.16, whose 〈D〉 = 1497 cm, 〈Γ〉 = 658 cm, 〈Ekin〉 =
10.60 MeV, Ncluster = 22 and run has DAQ errors. The top left shows an event distribution in xy plane,
the top right shows the distribution in zx plane, the bottom left shows the distribution in yz plane and the
bottom right shows the time evolution measured from the first event. The black lines are the boundary of
the FV. The black markers show events and the blue markers show the centroid.
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Figure 8.12: Same as Figure 8.11 except for displaying the found cluster at the 14th row in Table 8.16, whose
〈D〉 = 2361 cm, 〈Γ〉 = 32 cm, 〈Ekin〉 = 19.97 MeV, Ncluster = 3 and run has no DAQ errors. The blue lines
show fitted lines in the dimension fit.
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a large 〈D〉 = 2361 cm. If this cluster is a supernova cluster, the probability for observing an event with an
energy higher than the highest energy event in the cluster is 0.5% (4.2%) for the Mori (Nakazato) model and
the probability for observing an event with an energy lower than the lowest energy event is 0.8% (0.4%) for
the Mori (Nakazato) model. As a result, the highest energy event is too high and the lowest energy is too low
if the cluster is attributed to a supernova. The probability of failed supernovae of observing higher events
than the highest event is 31% however the probability of observing lower events than the lowest event is
0.04%. The highest energy event produced by spallation is around only 20 MeV. This consideration indicates
the highest energy event is likely to be a Michel electron from a decayed muon. However, no proceeding
stopping muon was around two events’ position in the 1 min before the event.

Figure 8.13 shows the minimum residual 〈Γ〉 in the line fit calculated via Equation 6.12 and shown in
Figure 6.7. The peak of supernova clusters is around 50 cm while spallation clusters peak around 70 cm. In
this distribution, only 0.59% of supernova clusters have a minimum residual distance to a fit line smaller
than 32 cm while 12.4% of spallation clusters have it, indicating this cluster is more likely to be spallation.
However, there is no muon which passed in the vicinity of the line by the line-like fit in the 1 min. of data
before the first event of the cluster. Figure 8.14 shows the histogram of the absolute value of inner products
of the direction of the fitted line from the dimension fit and proceeding muon directions in the 1 min before
the first event. Figure 8.15 shows the muon tracks, the inner product of which is higher than 0.9 in the 1 min
before the first event. These two figures indicate that there is no muon track correlated with the cluster.
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Figure 8.13: Minimum residual distributions for spallation and supernova clusters. The black line is a
spallation distribution and the red line is a supernova distribution. The blue dashed line indicates 32 cm,
which is the average residual of the remaining cluster.

As a result this cluster cannot be regarded as a supernova cluster nor a spllation cluster. This cluster is
therefore thought to be an unmodeled backgroud. One possibility of the cluster is that the latter two events
which failed to be fitted with the spallation fit and the first event is from the decay of a radioacitve isotope,
such as radon.

8.6.2 Upper limit

Since no evidence of an excess of clusters was found in this search and upper limit on the rate of supernovae
is calculated as follows. We assume a Poisson distribution,

P (n|λb) =
e−(λ+bTlive)(λ+ bTlive)n

n!
, (8.6)

where λ is the number of clusters in the signal regions in the search, b is the background rate, and Tlive is
the live time of the search.
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Figure 8.14: Histogram of the direction of the fit line and the muon track.
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Figure 8.15: Same as Figure 8.12 except for displaying the muon tracks whose absolute value of the inner
product with the direction of the fit line is higher 0.9 together. The blue lines show fitted lines in the
deminsion fit.
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Considering the background rate b = b′ and the Bayes’ theorem below,

P (λb|n) = AP (n|λbTlive)P (λ|n) (8.7)

= A

∫ ∞
0

P (λ)
e−(λ+bTlive)(λ+ bTlive)n

n!
δ(b− b′)db

= AP (λ)
e−(λ+b′Tlive)(λ+ b′Tlive)

n!
,

where A is the normalization constant and P (λ) is the prior. Here, we assume the prior P (λ) as the uniform
distribution,

P (λ) =

{
1

λmax
(0 ≤ λ ≤ λmax)

0 otherwise
, (8.8)

with λmax � 1. The upper limit at a confidence level is obtained via

C.L. =

∫ λlimit

0
dλAP (λ) e

−(λ+b′Tlive)(λ+b′Tlive)n

n!∫ λmax

0
dλAP (λ) e

−(λ+b′Tlive)(λ+b′Tlive)n

n!

(8.9)

=

∫ λlimit

0
dλA 1

λmax

e−(λ+b′Tlive)(λ+b′)n

n!∫ λmax

0
dλA 1

λmax

e−(λ+b′Tlive)(λ+b′Tlive)n

n!

=

∫ λlimit

0
dλ e

−(λ+b′Tlive)(λ+b′Tlive)n

n!∫∞
0
dλ e

−(λ+b′Tlive)(λ+b′Tlive)n

n!

(λmax →∞)

= −e−λlimit
b′Tlive + λlimit + 1

b′Tlive + 1
+ 1.

In Equation 8.9 we set n = 1 and performed the integral to obtain the last line. At 90% C.L. with b =
0.4812 yr−1 and Tlive = 3318.41 days we get

λlimit = 2.71097. (8.10)

The supernova upper limit is

RSN <
λlimit

Tlivepdetect
, (8.11)

where pdetect is the detection probability. Within the distance where the detection probability is 1, the
supernova upper limit at 90% C.L. is

RSN < 0.298 year−1. (8.12)

This upper limit is lower than other studies, 0.114year−1 out to 25 kpc of the LVD [86] and 0.32year−1

out to 100 kpc of the previous study in SK [21]. However, this search provides the upper limit more out to
the distance, which is the upper limit out to 150 kpc out to for the Nakazato model 300 kpc for the Livermore
model.
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Part IV

Future prospects and conclusion
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Chapter 9

Future prospects

This chapter describes future prospect for supernova simulation and observation.

9.1 Other progenitors

Neutrino emission should be related to the mass of the neutron star left behind after a supernova. In the
main part of this thesis only one progenitor was used, however several other progenitors have been simulated
to allow for a systematic classification of the neutrino emission. We do not know in advance which progenitor
can explode nor how heavy the neutron star will be so various progenitor simulations are needed. The method
in Ref. [18] can produce progenitors with sets of parameters. This method specifies 14 parameters to make
progenitors: M1, M2, M3, M4, M5, Sc, S1, S2, S5, Yec, Ye3, Yef , ρc and geff . In these parameters, parameters
notated as M show the masscoordinates for the corresponding entropy S and the electron fraction Ye change.
The parameter relationships can be seen in Figure 9.1. This method allows to make various progenitors
without expensive stellar evolution calculation.

M
M1 M2 M3 M4 M5

Ye3 

S2

Yec 

S1

Sc

Ye4 

S5

S,Ye

Figure 9.1: Schematic diagram of profiles of a entropy and a electron fraction specified with a set of 14
parameters. From Ref.[18].

About 2,400 progenitors were made with this method, of which 40 progenitors succeed to explode and
2 progenitors are were simulated for 20 s. The simulation setup is the same as that in chapter 3 except for
minimum grid width. In these simulations, the minimum width of grids is not 100 m but 500 m to accelerate
simulations in early time up to 1 s from the beginning of the simulation in order to decide whether progenitors
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can explode or not. In the early phase, density profiles are not steep so we do not need the fine grids in
Figure 3.3.

Figure 9.2 shows the histogram of neutron star masses of progenitors which exploded successfully. The
lightest neutron star is 1.26M� and the heaviest neutron star is 1.45M�. The parameters to generate these
progenitors are summarized in Table C.1. Note that the mass of the neutron star simulated in chapter 3 is
1.36M� as seen from Figure 4.7.
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Figure 9.2: Histogram of the neutron star masses whose progenitor successfully exploded.

Two long time simulation are performed and compared to the results of the z9.6 progenitor concerning
IBD event rates. The IBD cross section follows the formulas in §4.3.1 and observations 10 kpc away from earth
using 32.5 kton in SK is assumed without consideration of the detector responses. That is, the same situation
as §4.3 is assumed. Figure 9.3 shows the comparison of 3 progenitors which yield different neutron star masses:
1.41M�, 1.36M� (z9.6) and 1.29M�. Here neutrino oscillation is not considered. Table 9.1 summarizes the
number of events in each time interval. Figure 9.3 and Table 9.1 show the number of events increases as the
neutron star mass becomes heavier. This implies that if the distance of a supernova is determined through
optical observation, information of neutrino events could reveal the mass of the neutron star. In the future,
more simulations will be performed and their neutrino emission properties will be summarized systematically
in a database.

NS mass Ntot N(0 ≤ t ≤ 0.3) N(0.3 ≤ t ≤ 1) N(1 ≤ t ≤ 10) N(10 ≤ t ≤ 20)
1.41M� 1922.8 656.0(34.1%) 391.9(20.4%) 712.2(37.0%) 162.8(8.47%)
1.36M� 1782.6 575.6(32.3%) 377.8(21.2%) 682.0(38.3%) 147.1(8.25%)
1.29M� 1632.5 521.2(31.9%) 353.4(21.6%) 632.9(38.8%) 124.9(7.65%)

Table 9.1: Number of events divided into time intervals at SK for a supernova at 10 For each model Ntot is
the total IBD number of events, N(tmin ≤ t ≤ tmax) shows the number of events in the time interval between
tmin and tmax, and the number in the brackets shows the ratio relative to Ntot.

There is a small peak in the 1.41M� around 230 after the bounce. This peak is due to the explosion failing
temporarily; once the shock wave loses energy and shrinks onto the PNS surface, the amount of accreting
matter increases, neutrino luminosity also increases and finally the shock wave revives again. In the cases
of the PNSs of 1.36M� and 1.29M�, the amount of accreting matter is less so that the shock wave can
propagate without losing speed.
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Figure 9.3: Comparison of IBD rates of 3 progenitors. The red color shows the 1.36M� model (z9.6) same
as Figure 4.15, the blue color show the 1.41M� model and the orange color show the 1.29M� model.

9.2 Improvement in long time simulation

In this thesis, the methods of long time simulation were established. However some improvements in the
methods are considered to realize more realistic simulation in more varied situations.

9.2.1 Multi-dimensional effect

The long time simulation in chapter 3 was performed in 1D and does not consider multi-dimensional effects.
However recent studies reveal that multi-dimensional effects are also important in supernova explosions
and affect neutrino signals. Some methods exist to approximate multi-dimensional effects. For example,
Yamasaki and Yamada (2006) [87]explored the effects of convection in 1D models. They incorporated the
effects of convection into steady state models in 1D, analyzed the convection effects and found that the
convection effects lower the neutrino luminosity needed to revive a shock wave. Other works rely on Reynolds
decomposition [51, 88]. Reynolds decomposition means splitting the flow variables into an average component
and a perturbed component:φ = 〈φ〉 + φ′, where 〈φ′〉 = 0. Currently, it is not clear which approximation is
suitable. We thus start from selection of approximation by comparison to 3D models.

9.2.2 Black hole formation

GR1D’s metric is formalized via the Misner-Sharp metric [89]

ds2 = −e2φdt2 + eλdr2 +R2(r, t)dΩ. (9.1)

This metric however cannot calculate after a Schwarzschild surface forms because the coordinate diverge.
The time interval of the Misner-Sharp metric is the same at all space point and if a singularity forms in the
central region, the calculation becomes invalid. In order to avoid this problem, Hernandez-Misner metric
was developed [90]. In the Hernandez-Misner metric, time proceeds as observer time u. The observer time
means the time when an outgoing radial light ray emitted from a radius reaches a distant observer. From
Equation 9.1, outgoing radial light rays satisfy

eφdt = eλ/2dr. (9.2)
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The new time coordinate u is defined as

eψdu = eφ − eλ/2dr, (9.3)

where eψ is an integrating factor. We finally get the metric,

ds2 = −e2ψdu2 − 2eψeλ/2dudr +R2dΩ2. (9.4)

Supernovae in which a lot of matter accretes onto their cores and failed supernovae form black holes. We have
to calculate neutrino emissions from supernovae which form black holes to make a supenrova database. In
the future, we will implement the Hernandez-Misner metric with GR1D and perform a long time simulation
of neutrino emission from a black hole formation.

9.3 Hyper-Kamiokande

Hyper-Kamiokande (HK) is a successor of SK with a 8.4 times larger fiducial volume, 190 kton as illustrated
in Figure 9.4 [91]. Tank size is 74 m in diameter and 60 m in height. In HK, photosensors are going to be
better than those of SK. HK is under construction as of 2020 and is planned to start operation in 2027. The
large volume of HK is useful for the observation of supernova burst because it increases event statistics.

Figure 9.5 shows a scatter plot of supernova events of a 10 kpc supernova following the model in chapter 3.
Here, employment of the ID full volume of 244.3 kton is assumed, the IBD and ES reactions in §4.3.1 and§4.3.2
are considered and the 5 MeV energy threshold is applied. The expected number of events are more than
10,000 and are enough to discuss details of the neutrino time evolution even for a supernova at the galactic
center. Indeed, the time evolutions of mean event energy at SK and HK are compared in Figure 9.6, The
assumption of observation in SK is same as in Figure 4.19, that is 32.5 kton fiducial volume and 5 MeV
threshold. The error bars are defined as Equation 4.26. As seen from the figure, the observation with HK
better follows the ideal curve than SK. The HK’s ability is naturally useful for distant supernova search.
From very simple consideration, HK provides a

√
8.4 ≈ 2.9 times more sensitive search. Figure 9.7 shows a

sensitivity of distant supernova search, where the time windows in Table 8.4 and event reductions in Table 8.2
are assumed. In the HK era, observations from supernovae in the Andromeda galaxy, which is located 770 kpc
away from the earth, would be possible. It is also expected that the expected number of ES events increases,
the statistical error decreases and the precision of pointing of supernovae become better.
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Figure 9.4: Schematic illustration and dimensions of HK. From [19].

164



0 5 10 15 20
Time from the first event [s]

10

20

30

40

50

60

E
le

ct
ro

n/
Po

si
tr

on
 E

ne
rg

y 
[M

eV
]

10kpc with HK
IBD: 13352
ES: 635

1.0 0.5 0.0 0.5 1.0
cos

10

20

30

40

50

Po
si

tr
on

/E
le

ct
ro

n 
en

er
gy

 [M
eV

] 0

200

400

co
un

ts

10kpc with HK

0 500
counts

IBD:13352
ES:635

Figure 9.5: Event scatter plot of a 10 kpc supernova with HK. The left panel is time vs event energy plot
and the right panel is cosine of between outgoing particles and ingoing neutrinos vs event energy. The blue
colors show IBD events and the red colors show ES event.
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Figure 9.6: Comparison of the evolution of the mean energy evolution of positrons from IBD events (blue)
of SK (left) and HK (right). It is assumed that a supernova following the Mori model explodes 10 kpc away
from the earth and are observed with inner full volumes of 32.5 kton (SK) and 244.3 kton (HK). The red
curves show the ideal curve of the average energy in the case that infinite events are observed. Horizontal
bars show the width in time over which the mean energy is calculated. The width of time bin is 1 second.
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Chapter 10

Conclusion

Supernova explosions are one of the most energetic phenomena in the universe and are not still fully un-
derstood because the explosion mechanism is complicated, involving all four fundamental forces in nature.
Recent studies revealed that neutrinos play a key role in supernovae to revive shockwaves. This scenario is
known as neutrino heating. The observation of SN 1987A confirmed this scenario and allowed for estimates
of the total energy released.

The next step of supernova neutrino observation is to reveal the time evolution of supernova from ob-
servation of galactic supernovae. If galactic supernovae happen, SK is expected to observe more than 2,000
events over 10 s, which are enough statistics to discuss time evolution. However, most theoretical studies
concentrate on time the time period up to core collapse, which decides whether the explosion is successful or
not, and cannot be compared to observed late time data if galactic supernovae are observed.

This thesis addressed supernova study with respect to both theory and observation of supernovae to solve
the problem. On the theory side the long time supernova simulation and the integrated analysis framework
have been developed. The integrated framework aims to consistently calculate supernovae from core collapses
to observations on earth and bridge between theory and observation. The long time simulation was performed
from the core collapse to the PNS cooling with the consistent method for 20 s. At the next step, predictions
of neutrino signals at SK were reported. The model leads to 1840 IBD events and 92 ES events for no
oscillation, 1786 IBD events and 71 ES events for the normal hierarchy and 1860 IBD events and 76 ES
events for the inverted hierarchy at 10 kpc using the volume of 32.5 kton. A comparison to SN 1987A was
shown as a demonstration of the analysis framework and confirmed the simulation is not inconsistent with
that observation.

On the observation side a background study concentrating on the region outside of the FV was performed
in anticipation of a future supernova observation. Cut criteria and efficiencies for inside and outside of the
FV have been clarified. As a result, full volume analysis for supernova bursts became possible. Considering
events outside the FV, more than 80% of the total events can be used in the data analysis.

The final study in this thesis is the supernova burst search for the SK-IV period and the culmination of
the simulation and the background study. By comparison to the previous search, this search has improved at
three points: optimization based on more realistic models, employment of the dimension cut and employment
of the machine learning cluster cut. A 100% detection probability was obtained for a supernova explosion up
to 100 kpc for the Mori model, up to 100 kpc for the Mori model, up to 150 kpc for the Nakazato model, and
up to 300 kpc for a failed supernova model. This search employed 3384 days’ livetime data taken during the
SK-IV period and found a physical cluster in the signal region. However, this cluster’s properties, such as
its vertex and energy distributions, were found to be inconsistent with those expected from a real supernova
candidate and it is thus considered an unmodelled background. In conclusion, we set an upper limit out to
the distances where the detection probability is 100% of

0.29 year−1. (10.1)

In the future, we will increase the number of progenitor simulations and systematically understand the
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relationship of the neutrino emission and the masses of PNSs. Currently, we have succeeded to develop 40
progenitors which explode successfully in 1D simulations and have simulated 3 progenitors up to 20 s. In
order to increase the number of successful supernovae, we will implement approximate multi-dimensional
effects with GR1D. In addition the Hernandez-Misner metric will be implemented with GR1D instead of the
Misner metric, which allows for simulation after black hole formation.

The simulation and the search method of distant supernovae described in this thesis are also available
for HK, which is a successor of SK and will start operation in 2027. HK provides a near 10 times larger
amount of supernova events due to the vast volume of its tank. It will be useful for determining the supernova
direction and understanding supernova mechanisms. HK would make it possible to observe supernovae from
the Andromeda galaxy.
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Appendix A

Distribution of MC simulations

A.1 Mono-energetic electron MC distribution

Figures A.1 and A.2 show color maps of distributions in the xy plane of mono-energetic electron MC simu-
lations employed in §7.3. Figures A.3 and A.4 show those in the zr2 plane.

A.2 Supernvoa MC distribution

Figure A.5 shows color maps of distributions in the xy plane of supernova MC simulations employed in §7.3.
Figure A.6 shows those in the zr2 plane.
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Figure A.1: Vertex distributions in the plane of x and y. The left column is true vertex distribution and the
right panel is recontructed vertex distribution. The black lines show the boundary of the FV and the red
lines show the boundary of the ID. The top is 5 MeV, the middle is 10 MeV and the bottom is 15 MeV.
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Figure A.2: Same as Fig. A.1 except that plots of 20 MeV, 26 MeV and 30 MeV are shown.
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Figure A.3: Vertex distributions in the plane of z and r2. The left column is true vertex distribution and
the right panel is recontructed vertex distribution. The black lines show the boundary of the FV and the red
lines show the boundary of the ID. The top is 5 MeV, the middle is 10 MeV and the bottom is 15 MeV.
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Figure A.4: Same as Fig. A.3 except that plots of 20 MeV, 26 MeV and 30 MeV are shown.
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Figure A.5: Vertex distributions in the plane of x and y. The right is the true vertex distributions and the
left is the reconstructed distributions. The top is the Mori model and the bottom is the Nakazato model.
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Figure A.6: Vertex distributions in the plane of r2 and z. The right is the true vertex distributions and the
left is the reconstructed distributions. The top is the Mori model and the bottom is the Nakazato model.
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Appendix B

Found clusters with the supernova
search

This chapter shows clusters remaining in signal regions in chapter 8 expect for the clusters in the first row
and 14th row in Table 8.16. All clusters shown here ara DAQ clusters.
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Figure B.1: Same as Figure 8.11 except for displaying the found cluster at the 2nd row in Table 8.16, whose
〈D〉 = 1570 cm, 〈Γ〉 = 677 cm, 〈Ekin〉 = 23.61 MeV, Ncluster = 8 and run has DAQ errors.
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Figure B.2: Same as Figure 8.11 except for displaying the found cluster at the 3rd row in Table 8.16, whose
〈D〉 = 1425 cm, 〈Γ〉 = 611 cm, 〈Ekin〉 = 15.63 MeV, Ncluster = 29 and run has DAQ errors.
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Figure B.3: Same as Figure 8.11 except for displaying the found cluster at the 4th row in Table 8.16, whose
〈D〉 = 1271 cm, 〈Γ〉 = 363 cm, 〈Ekin〉 = 48.63 MeV, Ncluster = 7 and run has DAQ errors.
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Figure B.4: Same as Figure 8.11 except for displaying the found cluster at the 5th row in Table 8.16, whose
〈D〉 = 1508 cm, 〈Γ〉 = 337 cm, 〈Ekin〉 = 13.55 MeV, Ncluster = 10 and run has DAQ errors.
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Figure B.5: Same as Figure 8.11 except for displaying the found cluster at the 6th row in Table 8.16, whose
〈D〉 = 1389 cm, 〈Γ〉 = 396 cm, 〈Ekin〉 = 19.69 MeV, Ncluster = 24 and run has DAQ errors.
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Figure B.6: Same as Figure 8.11 except for displaying the found cluster at the 7th row in Table 8.16, whose
〈D〉 = 1674 cm, 〈Γ〉 = 465 cm, 〈Ekin〉 = 18.44 MeV, Ncluster = 19 and run has DAQ errors.
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Figure B.7: Same as Figure 8.11 except for displaying the found cluster at the 8th row in Table 8.16, whose
〈D〉 = 1494 cm, 〈Γ〉 = 508 cm, 〈Ekin〉 = 69.00 MeV, Ncluster = 56 and run has DAQ errors.
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Figure B.8: Same as Figure 8.11 except for displaying the found cluster at the 9th row in Table 8.16, whose
〈D〉 = 1621 cm, 〈Γ〉 = 539 cm, 〈Ekin〉 = 20.40 MeV, Ncluster = 11 and run has DAQ errors.
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Figure B.9: Same as Figure 8.11 except for displaying the found cluster at the 10th row in Table 8.16, whose
〈D〉 = 1545 cm, 〈Γ〉 = 77 cm, 〈Ekin〉 = 17.12 MeV, Ncluster = 4 and run has DAQ errors.
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Figure B.10: Same as Figure 8.11 except for displaying the found cluster at the 11th row in Table 8.16, whose
〈D〉 = 2129 cm, 〈Γ〉 = 275 cm, 〈Ekin〉 = 23.70 MeV, Ncluster = 5 and run has DAQ errors.
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Figure B.11: Same as Figure 8.11 except for displaying the found cluster at the 12th row in Table 8.16, whose
〈D〉 = 1766 cm, 〈Γ〉 = 71 cm, 〈Ekin〉 = 55.6 MeV, Ncluster = 5 and run has DAQ errors.
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Figure B.12: Same as Figure 8.11 except for displaying the found cluster at the 13th row in Table 8.16, whose
〈D〉 = 1471 cm, 〈Γ〉 = 539 cm, 〈Ekin〉 = 12.23 MeV, Ncluster = 8 and run has DAQ errors. The blue lines
show fitted lines in the deminsion fit.
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Figure B.13: Same as Figure 8.11 except for displaying the found cluster at the 15th row in Table 8.16, whose
〈D〉 = 1822 cm, 〈Γ〉 = 788 cm, 〈Ekin〉 = 46.18 MeV, Ncluster = 17 and run has DAQ errors.

188



Appendix C

Parameters of neutron star generation

Table C.1 shows parameters for 40 progenitors, which can explode in 1D and neutron star masses in the
histogram in Figure 9.2. Note that Ye4 is fixed to 0.5.

189



NS mass M1 M2 M3 M4 M5 Sc S1 S2 S5 S6 Yec Ye3 ρc geff

M� M� M� M� M� M� kB/bayron kB/bayron kB/bayron kB/bayron kB/bayron gcm−1

1.36 1.1281 1.1566 1.2881 1.3796 1.4024 0.9229 0.9770 1.0893 1.3023 6.6728 0.4389 0.4753 5.80× 109 0.965
1.30 1.1045 1.1596 1.2639 1.3402 1.3493 0.8628 0.9519 1.1310 1.2464 6.8804 0.4401 0.4635 5.80× 109 0.965
1.34 1.0783 1.2497 1.3237 1.3606 1.3883 0.9534 1.0135 1.0411 1.3071 6.4028 0.4379 0.4636 5.80× 109 0.965
1.34 1.2028 1.2112 1.2533 1.3766 1.3908 0.8597 0.9053 1.1247 1.3729 6.4438 0.4451 0.4808 5.80× 109 0.965
1.42 1.1194 1.1860 1.2594 1.4634 1.4676 0.9061 0.9376 1.1176 1.3757 6.8027 0.4598 0.4844 5.80× 109 0.965
1.30 1.1081 1.2136 1.3065 1.3071 1.3450 0.8238 0.9621 1.1725 1.1871 6.4577 0.4243 0.4866 5.80× 109 0.965
1.42 1.1908 1.2096 1.2731 1.4577 1.4611 0.8971 0.9337 1.2069 1.3716 7.5963 0.4623 0.4808 4.78× 109 0.965
1.26 1.0980 1.1054 1.2357 1.2891 1.3016 0.8351 1.0144 1.1403 1.1712 7.2252 0.4066 0.4917 7.16× 109 0.965
1.30 1.0323 1.2459 1.2659 1.3180 1.3397 0.9093 0.9161 1.0336 1.2464 6.6349 0.4336 0.4675 6.86× 109 0.965
1.29 1.1726 1.2256 1.3288 1.3338 1.3409 0.9011 0.9107 1.0445 1.2132 6.7944 0.4490 0.4525 7.88× 109 0.965
1.32 1.1545 1.2509 1.2776 1.3530 1.3607 0.8269 1.0218 1.1855 1.2173 6.8259 0.4266 0.4910 4.12× 109 0.965
1.43 1.2134 1.2834 1.4159 1.4631 1.4701 0.8859 0.9020 1.1478 1.3870 7.4619 0.4707 0.4804 3.31× 109 0.965
1.42 1.2105 1.2761 1.4201 1.4537 1.4576 0.8976 0.9548 1.1556 1.3102 7.2199 0.4564 0.4921 4.23× 109 0.965
1.42 1.2090 1.2794 1.4205 1.4504 1.4664 0.9082 0.9263 1.1825 1.3106 7.5588 0.4658 0.4783 3.97× 109 0.965
1.41 1.2105 1.2661 1.4237 1.4526 1.4534 0.8695 0.9434 1.1714 1.4061 7.4838 0.4681 0.4737 5.12× 109 0.965
1.41 1.2186 1.2766 1.4109 1.4475 1.4582 0.9250 0.9746 1.1735 1.4377 7.8298 0.4644 0.4688 3.49× 109 0.965
1.41 1.2042 1.2722 1.4159 1.4457 1.4664 0.8532 0.9454 1.1645 1.3490 7.7687 0.4678 0.4782 5.17× 109 0.965
1.42 1.2168 1.2802 1.4342 1.4608 1.4749 0.9252 0.9400 1.2638 1.3791 7.8406 0.4696 0.4710 5.41× 109 0.965
1.42 1.2130 1.2753 1.4322 1.4584 1.4616 0.8857 0.9057 1.2539 1.3134 7.5605 0.4667 0.4832 3.61× 109 0.965
1.41 1.2056 1.2605 1.4203 1.4519 1.4598 0.8595 0.8919 1.1520 1.3463 7.9037 0.4709 0.4793 4.23× 109 0.965
1.42 1.2132 1.2855 1.4109 1.4611 1.4704 0.8977 0.9105 1.2122 1.4280 7.5562 0.4728 0.4738 6.53× 109 0.965
1.41 1.2106 1.2779 1.4324 1.4495 1.4528 0.8574 0.9094 1.1694 1.3822 7.8545 0.4643 0.4851 4.88× 109 0.965
1.42 1.2107 1.2767 1.4102 1.4524 1.4664 0.8657 0.9188 1.2514 1.3920 7.3201 0.4633 0.4864 5.37× 109 0.965
1.42 1.1988 1.2695 1.4096 1.4607 1.4714 0.9176 0.9716 1.2006 1.4229 7.4803 0.4616 0.4803 5.81× 109 0.965
1.42 1.2128 1.2648 1.4310 1.4620 1.4662 0.9220 0.9683 1.1907 1.4202 7.7034 0.4633 0.4763 3.23× 109 0.965
1.41 1.2103 1.2666 1.4317 1.4476 1.4531 0.9385 0.9691 1.1540 1.3964 7.6416 0.4651 0.4658 3.44× 109 0.965
1.45 1.2083 1.2783 1.4053 1.4639 1.4776 0.8442 0.9094 1.0930 1.3177 7.1761 0.4687 0.4984 1.75× 109 0.965
1.44 1.2251 1.2870 1.4122 1.4727 1.4755 0.9454 0.9683 1.2259 1.4376 7.1932 0.4555 0.4925 2.24× 109 0.965
1.42 1.2183 1.2780 1.4120 1.4485 1.4596 0.8927 0.9616 1.1707 1.4667 6.7245 0.4674 0.4718 3.18× 109 0.965
1.43 1.2051 1.2758 1.4287 1.4758 1.4761 0.8917 0.9658 1.1578 1.3109 6.7914 0.4721 0.4749 4.52× 109 0.965
1.43 1.2123 1.2891 1.4299 1.4677 1.4754 0.8378 0.9375 1.1323 1.3837 7.5739 0.4733 0.4819 5.30× 109 0.965
1.43 1.2038 1.2814 1.4152 1.4720 1.4754 0.9301 0.9731 1.0604 1.4564 7.9563 0.4684 0.4745 5.37× 109 0.965
1.42 1.2093 1.2788 1.4116 1.4598 1.4705 0.9078 0.9471 1.1024 1.5237 8.1509 0.4561 0.4940 6.07× 109 0.965
1.44 1.2056 1.2911 1.4114 1.4678 1.4773 0.8636 0.8979 1.0612 1.4179 8.0633 0.4659 0.4973 3.56× 109 0.965
1.43 1.2172 1.2927 1.4194 1.4661 1.4717 0.8158 0.8584 1.1574 1.3454 7.6644 0.4790 0.4820 3.93× 109 0.965
1.43 1.2210 1.2790 1.4101 1.4649 1.4741 0.8118 0.8888 1.0919 1.3219 7.7691 0.4744 0.4924 2.08× 109 0.965
1.44 1.1971 1.2808 1.4089 1.4716 1.4726 0.7941 0.9666 1.0749 1.2915 6.9801 0.4784 0.4800 2.11× 109 0.965
1.43 1.2164 1.2782 1.4084 1.4629 1.4644 0.8980 0.9813 0.9943 1.2046 7.2731 0.4557 0.4977 2.52× 109 0.965
1.44 1.2157 1.2868 1.4161 1.4608 1.4856 0.9228 0.9306 1.1905 1.2626 7.6317 0.4690 0.4785 2.53× 109 0.965
1.44 1.2104 1.2818 1.4018 1.4666 1.4804 0.9020 0.9262 1.1884 1.3707 6.7906 0.4664 0.4860 2.92× 109 0.965

Table C.1: Parameters for generation of progenitors which can explode in 1D with the method described in
§9.1 and neutron star masses left behind supernovae.
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