Penning trapを用いた 電子g因子測定とDark Photon/Axion探索

Xing Fan

Northwestern University 京都大学高エネルギー研究室セミナー

2022.Dec.28

ENERGY S

Masason Foundation

g因子測定

Measurement of the Electron Magnetic Moment

X. Fan,^{1,2,*} T. G. Myers,² B. A. D. Sukra,² and G. Gabrielse^{2,†}

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA (Dated: September 28, 2022)

> arxiv: 2209.13084 accepted by Phys. Rev. Lett.

> > and axion

Dark Photon/Axion

One-Electron Quantum Cyclotron as a Milli-eV Dark-Photon Detector

Xing Fan,^{1,2,*} Gerald Gabrielse,^{2,†} Peter W. Graham,^{3,4,‡} Roni Harnik,^{5,6} Thomas G. Myers,² Harikrishnan Ramani,^{3,§} Benedict A. D. Sukra,² Samuel S. Y. Wong,³ and Yawen Xiao³

Phys. Rev. Lett. 129, 261801 (2022)

For English version, there are videos in http://cfp.physics.northwestern.edu/gabrielse-group/gabrielse-home.html

電子のg因子と標準模型の歴史

g=1

g=2

古典論

Dirac's theory:

+繰り込み群+QCD:

g=2.002 319 304 36 ...

5 loopsまで + … + 仮想µ, τ +ハドロン B ⊗∽∽∽∽ + & < \otimes $\frac{1}{2} \times \left(\frac{\alpha}{\pi}\right)$ + -0.328... $\frac{g}{2}$ 1 fine structure constant: Rb および Csを用いて 独立に測られる

Aoyama, Kinoshita, Nio, Atoms **2019**, 7(1), 28 and references therein

$$\frac{J. NO.}{D. 28}$$

herein 5次のQED計算 α 測定の誤差
 $\frac{g}{2}$ (Rb) = 1.001 159 652 180 254 (12) (11) (93)
Nature **588**, 61 (2020)

hadron loop

$$\frac{g}{2}$$
(Cs) = 1.001 159 652 181 598 (12) (11) (234)

Science 360 191 (2018)

5

this work

なぜ電子のg因子なのか?

- ・電子のg因子なんかより高精度に測れているもの はいくらでもある
 - •水素原子1s-2s:15桁
 - ・光格子時計の周波数:18桁
 - 重力波によるひずみh: 24桁

→しかし理論的にその値を予測できない (原子核モデル, 束縛系・多体系, そもそもパラメータが不明)

 ・高精度の予測・測定のためにはシンプルさが大事
 →Penning trap中の電子のg因子

g因子測定の原理

7

Penning trap中での運動

単一電子の検出

cyclotron運動は量子的な描像

なぜv,ではなくv,を測るのか?

遷移をどう観測するか?

2008年から装置を一新

Penning trap

2008年からの改善点

- <u>再現性・安定性の向上</u>
 ▶長期の安定したデータ取得のため、 モジュラーで、冷却で壊れない ハードウェアを多く製作した
- 2. 磁場の一様性・ドリフトの改善 →新しく³Heを用いた磁力計を製作 X.Fan, et al., Rev. Sci. Instrum. 90, 083107 (2019)

▶一様性も5倍改善

3. <u>Penning trapによる_vのずれ(cavity QED)</u> <u>の理解</u>

統計量5倍 (本日は省略)

- cyclotron と anomaly を交互に測定
 →長期的なBドリフトをキャンセル
 →遷移確率 vs ドライブ周波数を記録
- 今回anomaly drive 周波数をblindした
 - $v_a^{true} = v_a^{set in computer} + X$

がなまった形をしている

cavity QED効果

▶ Penning trapの壁の効果でv_cだけが変わる(v_sは変わらない!!!)
 ▶ ずれの大きさはv_cとcavityの共振周波数で決まる
 →cavityの共振周波数を測り,そこから離れた周波数v_cでgを測定

新しく補正の方法を開発し, 正しくcavity効果を評価(したつもり)

トラップされた電子を用いた Dark Photon/Axion探索

PHYSICAL REVIEW LETTERS 129, 261801 (2022)

One-Electron Quantum Cyclotron as a Milli-eV Dark-Photon Detector

Xing Fan^(b),^{1,2,*} Gerald Gabrielse,^{2,†} Peter W. Graham^(b),^{3,4,‡} Roni Harnik,^{5,6} Thomas G. Myers,² Harikrishnan Ramani^(b),^{3,§} Benedict A. D. Sukra^(b),² Samuel S. Y. Wong^(b),³ and Yawen Xiao^(b)³

Collaboration work with Stanford University

- Peter Graham
- Harikrishnan Ramani
- Samuel S. Y. Wong
- Yawen Xiao

Fermilab National Laboratory

Roni Harnik

Dark Matter/Dark Photon/Axion

SM photon A

ダークマターハローの性質

- SM 粒子との結合は弱い
- 速度 $v/c \approx 10^{-3}$ •
- local 密度 ρ_{DM} ~0.4 GeV/cm³

Dark Photon

U(1)ゲージ場

 \blacktriangleright mass $m_{A'}$ $\succ \mathcal{L} = \chi (\mathbf{B} \cdot \mathbf{B}' - \mathbf{E} \cdot \mathbf{E}')$

dark photon A'

Axion strong CP問題の解に付随する粒子 \blacktriangleright mass m_a $\succ \mathcal{L} = g_{avv} a \mathbf{E} \cdot \mathbf{B}$ SM photon Axion $g_{a\gamma\gamma}$ h

• Dark Photon

Axion

- そもそもmeVは他の領域に比べデバイスが少ない
- チューナブルな検出エネルギー 0.1-1 meV
- n_c=0 → n_c=1 遷移はバックグラウンドフリー
- ・ 強磁場下で何の問題もなく動く (=Axionに応用できる)

meVは狙い目

バックグラウンド フリー

Demonstration Search

電子を基底状態n_c=0に放置してモニターするだけ

得られたDP Limit

ただしあまりに細すぎる DP/Axionに特化した装置を作ると? → next page

いろんな改良アイデア

open endcap trap

✓open endcap trapを使い ✓外部にfocusing antennaをおく ✓10個くらい電子をトラップする

<u>アイデア</u>

アクシオン用の実験も考え中 $\mathcal{L} = g_{a\gamma\gamma} \, a\mathbf{E} \cdot \mathbf{B}$ ▲ Axionからの E field cyclotron motion n_c=0 $n_c=1$

Axionからの電場(磁場と並行)を cyc.運動平面(磁場と垂直)に変換する必要あり

Shamelessly Borrowing an Idea

Summary

- 新しく建設した装置で電子のg因子を測定した
 ▶非常に広く磁場を変えて系統誤差をより詳しくスタディ.
- 2. meV Dark Photonサーチをdemonstration
 ▶ 0.6 meVでのバックグラウンドフリーサーチ
 ▶ 感度向上案とアクシオンへの応用も設計中!

Northwestern

G. Gabrielse X. Fan T. Myers B.A.D. Sukra

Summary

