高強度超冷中性子源による 中性子電気双極子モーメント探索

川崎真介

KEK

Contents

- Electric-Dipole Moment
- Ultra-Cold Neutron (UCN)
 - 特徴
 - UCNを用いた物理
 - UCN生成方法
- nEDM measurement
 - nEDM experiment at ILL/PSI
 - TUCAN
 - UCN源開発
 - 測定器開発 (今日は少しだけ)
 - 計画
- ・まとめ

TRIUMF Ultra-Cold Advanced Neutron 日本---カナダの国際共同実験

B. Bell^{5,8}, C. Bidinosti³, C. Davis⁵, B. Franke^{2,5}, M. Gericke⁴, P. Giampa⁵, S. Hansen-Romu^{3,4}, K. Hatanaka⁶, T. Hayamizu¹¹, T. Higuchi⁶, G. Ichikawa¹, S. Imajo⁶, B. Jamieson³, S. Kawasaki¹, M. Kitaguchi¹⁰, W. Klassen^{3,4}, A. Konaka⁵, E. Korkmaz⁷, M. Lang^{3,4}, M. Lavvaf³, L. Lee⁵, T. Lindner^{3,5}, K. Madison², Y. Makida¹, J. Mammei⁴, R. Mammei^{3,5}, C. Marshall⁵, J. W. Martin³, R. Matsumiya⁵, M. McCrea³, E. MIller², K. Mishima¹, T. Momose², T. Okamura¹, O. H. Jin⁶, KEK R. Picker^{5,9}, W. D. Ramsey⁵, LW. Schreyer⁵, H. SHimizu¹⁰, S. Sidhu⁹, I. Tanihata⁶, W. T. H. van Oers^{4,5}, and Y. Watanabe¹–

> ¹KEK, ²The University of British Columbia ³The University of Winnipeg, ⁴The University of Manitoba ⁵TRIUMF, ⁶RCNP, ⁷The University of Northern BC ⁸McGill University, ⁹Simon Fraser University ¹⁰Nagoya University, ¹¹Riken

SFL

TUCANの目標

WINNIPEG

IUMF

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

NAGOYA

- 中性子電気双極子モーメントを 10⁻²⁷ ecmの精度で測定する
- 世界最大強度の超冷中性子源を建設する

Electric Dipole Moment (EDM)

- Electric dipole moment (EDM)
 - Vector derived from charge distribution

$$\vec{d} = d \frac{\vec{s}}{|\vec{s}|}$$

unit e cm

	Р	т
spin	Even	Odd
EDM	Odd	Even

 $d\neq 0 \rightarrow T$ Violation

Assume CPT conservation

 \rightarrow CP Violation

new source of CP violation?

EDM search in various kind of system is important to understand nature of physics

4

EDMの大きさ

•例えば中性子EDMの場合

 $|d_{\rm n}| < 1.8 \times 10^{-26} {\rm \ ecm}$

Phys. Rev. Lett 124,081803 (2020)

地球の大きさの中から1µm離れた素電荷のを見つけるのと同じスケール感

EDMの 測定 方法 $H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$ $\boldsymbol{B} \neq 0$ $\boldsymbol{B} \neq 0$ $\boldsymbol{B} \neq 0$ $\boldsymbol{E}=0$ *E || B* -E //Bm = -1/2 $\boldsymbol{B}=0$ $\boldsymbol{E}=0$ hv_0 hv_+ $h\nu_{-}$ m = +1/2 $u_{\uparrow\downarrow}$ $u_{\uparrow\uparrow}$ $v_{\uparrow\uparrow} = \frac{2\mu B + 2dE}{h}$ $v_{\uparrow\downarrow} = \frac{2\mu B - 2dE}{h}$

(理想的) 電磁場中のスピン歳差運動周期の差を測定

$$\Delta \nu = \nu_{\uparrow\uparrow} - \nu_{\uparrow\downarrow} = \frac{4dE}{h}$$

d = 10⁻²⁶ ecm, E = 10 kV/cmの時

 $\Delta v = 1 \ \mu Hz$

Cf. 中性子のラーモア周波数(v₀) 30 Hz/μT

figure from K. Asahi

ラムゼー共鳴法

位相のずれがt_c間蓄積される

ラムゼー共鳴法

ある間隔をあけて粒子とコヒーレントな電磁場 を2度相互作用させたときに生じる共鳴現象。時 間間隔が大きい程共鳴の線幅は電磁場間の時間 間隔に反比例して小さくなる

B₀ = 1 µT B₁ = 0.1 µT の時

細かいフリンジの周期は**t**_c に比例して細かくなり、周 波数決定精度が向上する

7

この項が消え切らない

$$\Delta \nu = \nu_{\uparrow\uparrow} - \nu_{\uparrow\downarrow} = \frac{2\mu(B_{\uparrow\uparrow} - B_{\uparrow\downarrow})}{h} + \frac{4dE}{h}$$

・Bの精密制御

E = 10 kV/cmでd = 10⁻²⁶ ecmを測定する場合

$$\Delta B = (B_{\uparrow\uparrow} - B_{\uparrow\downarrow}) \ll \frac{dE}{\mu} \sim 10 \text{ fT}$$

磁場を精密に制御するために

- 磁気シールド
- 磁束計
 - SQUID, Cs, Rb
 - Co-magnetometer (¹⁹⁹Hg, ³He) の開発が重要

- ・大きなE
 - ・高電場
 - ・分子、結晶内の有効電場

History of EDM search

Pendlebury and Hinds, NIM A 440 (00) 471

upper limit neutron EDM C. Abel et al. $|d_{\rm p}| < 1.8 \times 10^{-26} \, {\rm ecm}$ UCN Phys. Rev. Lett. 124, 081803 (2020) electron EDM $|d_{0}| < 1.6 \times 10^{-27}$ ecm Cs $|d_{\rm e}| < 1.6 \times 10^{-27} \, {\rm ecm} \, {\rm Tl}$ B.C. Regan et al, PRL 88, 071805 (2002) $|d_{\rm p}| < 10.5 \times 10^{-28} \, {\rm ecm \ YbF}$ J. J. Hudson et al, Nature 473, 493 (2011) $|d_{\rm p}| < 8.7 \times 10^{-29}$ ecm ThO The ACME Collaboration et al, atomic EDM Science, 343, 269 (2014) $|d_{\rm Hg}| < 7.4 \times 10^{-30} \, {\rm ecm}^{\, 199} {\rm Hg}$ B. Garner et al., PRL 116 161601 (2016) $|d_{\rm ye}| < 1.5 \times 10^{-27} \, {\rm ecm}^{129} {\rm Xe}$ F. Allmendinger et al, muon EDM Phys. Rev. A 100, 022505 (2019) $|d_{\mu}| < 1.8 \times 10^{-19} \,\mathrm{ecm}$ G. W. Bennett et al, Phys. Rev. D 80, 052008 (2009)

Standard model prediction neutron : $10^{-30} - 10^{-32}$ ecm electron : $10^{-37} - 10^{-40}$ ecm

much smaller than current experimental sensitivity good probe of testing new physics

中性子EDM

Various neutrons

Name Wavelength Application Energy Velocity Temperature Fast neutron >500 keV 40 fm 10⁷ m/s $6 \times 10^{9} \text{ K}$ Nuclear physics Astro physics 0.1 Å $1 \times 10^{5} \text{ K}$ Epi-themral neutron 10 eV 44,000 m/s Resonance capture Thermal neutron 25 meV 1.8 Å 2200 m/s 300 K Neutron scattering Cold neutron 2 meV 6 Å 600 m/s 23 K Neutron scattering for condensed matter (nm) Very cold neutron 50 µeV 40Å 100 m/s 0.6 K Neutron interferometer Ultra-cold netruon <300 neV 500Å 8 m/s 3 mK nEDM etc. UCN

Fast

Slow

Slide by K. Mishima

超冷中性子 Ultra Cold Neutron (UCN)

物質、重力、磁場ポテンシャルによるに閉じ込め 長時間(~百秒)の観測が可能

超冷中性子 エネルギー ~ 100 neV 速度 ~ 5 m/s 波長 \sim 50 nm 中性子の受ける力 強い相互作用 フェルミポテンシャル 335 neV (⁵⁸Ni) 原子間距離に比べUCNの波長が長いため、個々 の原子核のポテンシャルの平均を感じる 弱い相互作用 β -decay $n \rightarrow p + e + v_e$ 重力場 100 neV/m • 磁場 60 neV/T

→さまざまな基礎物理実験に用いられる
 nEDM、重力、寿命、...

Gravity experiment

• Gravity

potential well

$$V(z) = \begin{cases} mgz & (z \ge 0) \\ \infty & (z < 0) \end{cases}$$

Schrödinger equation

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dz^2} + V(z)\right)\psi(z) = E\psi(z)$$

$$\psi(z) = A \varphi(z)$$

 $\varphi(z)$: Airy function

Q-Bounce

T. Jenke et al. NIM A 611 (2009) 318-321

Measurement of time evolution of quantum state

- UCN fall down at the exit of the slit
- sudden change of boundary condition
- settle new state after certain time evolution ٠

Fig. 3. Simultaneous fit of the square of the Schrödinger wave function to the data shown in the upper and lower figure. Upper figure; preparation of the wave function directly at the step (x = 0 cm). Lower figure: measurement at a distance x = 6 cm after the same step, quantum prediction after falling and rebouncing.

How to produce UCN? (1) neutron production and thermalization

- Neutron source
 - Reactor
 - JRR3、ILL(grenoble) etc.
 - Fission of ²³⁵U or ²³⁹Pu
 - Accelerator (Spallation)
 - J-PARC MLF, SNS, PSI, TRIUMF, LANL etc.
 - spallation reaction induced by proton beam

produced neutron energy \sim MeV

- Neutron moderation
 - like billiard
 - criteria for a good moderator
 - large scattering cross section
 - U \sim 1u
 - large density (liquid, solid ≫ gas)
 - small absorb cross section

17

Neutron moderator

- Thermal neutron (300K)
 - light water: H2O
 - Pros. good thermalization efficiency (scattering with proton)
 - Cons. large absorb cross section
 - Heavy water D2O
 - Pros. small absorb cross section
 - Cons. small thermalization efficiency (scattering with deuterium)
 D2O is the better moderator in total
- cold neutron (20K)
 - solid heavy water (sD2O)
 - Pros. non-inflammable
 - Cons. large binding energy of Oxygen
 Wigner energy
 - liquid Deuterium (ID2)
 - Pros. good thermalization efficiency
 - Cons. inflammable
 - Solid heavy methane (sCD4)
 - Pros. good thermalization (rotation and vibration)
 - Cons. inflammable
 - low radiation hardness

How to produce UCN? (2)

- Doppler shifter (conventional method)
 - slow down by reflection on the moving mirror Restriction by Liouville's theorem conservation of phase space density

- Super thermal method (new techinic)
 - phonon up-scattering of super-fluid He or solid D2
 - use large phase space of phonon
 - free from Liouville's theorem

UCN Source at ILL Doppler sifter type

Institute Laue-Langevin Grenoble, France Reactor 57MW

UCN Production

Turbine UCN source

slow down by reflection on the moving mirror Restriction by Liouville's theorem conservation of phase space density

http://www.ill.fr/YellowBook/PF2

Super thermal method

- phonon down-scattering in super-fluid He or solid D₂
- use large phase space of phonon
- free from Liouville's theorem

We use superfluid helium as a UCN converter

UCN production cross section $\frac{d\sigma}{dE} = 4\pi b^2 \frac{k_f}{k_i} S(q, \hbar \omega)$

> k_i, k_f : wavenumber $S(q, \hbar \omega)$: Dynamic stracture factor

resonant energy (single phonon excitation) 1 meV

UCN Production rate

$$P(E_u)dE_u = \left[\int \frac{d\Phi(E_i)}{dE} N_{\rm He} \frac{d\sigma}{dE} (E_i \to E_u) dE_i\right] dE_u$$

$$P = \int p(E_u) dE_u = N_{\text{He}} 4\pi b^2 \left(\frac{\hbar}{m_n}\right)^2 \frac{k_c^3}{3} \left[\int \frac{d\Phi(q)}{dE} S\left(q, \hbar\omega = \frac{\hbar^2 q^2}{2m_n}\right) dq \right]$$

High intensity UCN source at PSI

- UCN Converter
 - Solid Deuterium (SD₂)
 - Mass: 5 kg
 - Temperature: 5 K
- Proton Beam
 - power: 1.3 MW
 - 590 MeV, 2.2 mA
 - Duty cycle: 1%

nEDM measurement at ILL/PSI

experimental setup

Phy. Rev. Lett. 97 .131801 (2006)

Store UCN inside of Electro-Magnetic field and measure the precession frequency by Ramsey interferometry.

- 1. Spin Polarizer
- 2. Ramsey precession
- 3. Spin Analyzer
- 4. UCN detector

experimental setup

electric field 10kV/cm t_c 130s

Phy. Rev. Lett. 97 .131801 (2006)

Statistical sensitivity

$$\sigma_d = \frac{\hbar}{2\alpha E t_c \sqrt{N}}$$

α : polarization (isibility) E : electric field t_c : precession time N : number of UCN

The new result reported in 2020 $d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26}$ e.cm @ PSI upper limit 1.8×10^{-26} ecm (90% C.L.)

Statistically limited -> necessity of high intensity UCN source

co-magnetometer

reduce systematic error by magnetic field stability

P. G. Harris et al., Phys. Rev. Lett. 82, 904 (1999).

frequency shift $\Delta \omega = 4 \times 10^{-7} Hz$ (E = 10kV/cm, d = 10⁻²⁷ecm) cf. Larmor frequency of neutron 30Hz @ B₀ = 1µT

required magnetic field stability : 10^8 1µT * 10⁻⁸ = 10 fT

It is difficult to stabilize magnetic field in such a accuracy

-> monitor and correct magnetic field

¹⁹⁹Hg for co-magnetometer

- feels same magnetic field as UCN
- polarization is measured by UV laser

Geometric Phase effect

現在の系統誤差の最大要因

 水平方向磁場による周波数シフト(Bloch-Siegert shift)

$$\Delta\omega = \frac{\omega_{xy}^{2}}{2(\omega_{0} - \omega_{r})}$$

 ω_r : angular speed of B_{xy} rotation

• 水平方向磁場

$$B_{xy} = \frac{\partial B_z}{\partial z} \frac{R}{2} + \frac{E \times v}{c^2}$$

- 第1項:磁場非一様性
 第1項:相対論的運動
- 第2項:相対論的運動
- UCNの載っている座標から見るとBxyは回転しているように見える
- 右、左回りで第2項のみ符号を変える

$$\Delta\omega_{ave} = \frac{1}{2} \frac{\gamma B_z \left[\left(\gamma \frac{\partial B_z}{\partial z} \frac{R}{2} \right)^2 + \left(\frac{v_{\phi} E_z}{c^2} \right)^2 \right] + \gamma^2 \frac{\partial B_z}{\partial z} \frac{R}{2} \frac{v_{\phi} E_z}{c^2}}{(\gamma B_z)^2 - \left(v_{\phi}/R \right)^2}$$

電場反転の際の周波数差を取った際にEに比例する項が残る

偽EDM

電場反転したときの周波数差

$$d_{false}^{GPE} \approx \frac{\hbar \gamma^2 \frac{\partial B_z}{\partial z} v_{\phi}^2 R^2 / c^2}{(\gamma B_z)^2 - (v_{\phi}/R)^2}$$

 $\frac{\partial B_z}{\partial z} = 1 \text{ nT/m correspond error of } 10^{-26} \text{ ecm}$ 磁場の一様性を高めることが重要

FIG. 1. (Color online) The shape of the **B**₀ field lines, when there is a positive gradient $\partial B_{0z}/\partial z$, shown in relation to an outline of the trap used to store ¹⁹⁹Hg atoms and UCN's for the neutron EDM measurements at the ILL. If another field is superimposed having lines that both enter and leave through the sidewalls, like the one on the right-hand side, it will be shown later that it does not affect the false EDM signals that are generated.

FIG. 3. (Color online) A view of the xy plane of the trap bounded by the circular sidewall. Part of an orbit is shown projected onto the xy plane for a particle undergoing specular reflection. The orbit is characterized by the angle α . Vectors **E** and **B**_{0z} point towards the reader and $\partial B_{0z}/\partial z$ is positive.

Pendlebury et al, PRL 70, 032102 (2004)

nEDM measurement at PSI

- Basically same setup as ILL experiment
 - Cell volume : 20 L
- 11400 UCN are counted per cycle
- data taken: 2015 2016 up to reach 1×10^{-26} ecm statistical error
- Blind analysis by two groups statistically limited $d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{svs}) \times 10^{-26} \text{ ecm}$ $|d_n| < 1.8 \times 10^{-26} \text{ ecm (90\% C.L)}$

C. Abel, et al, Phys. Rev. Lett. 124 81803 2020

TABLE I. Summary of systematic effects in 10^{-28} e.cm. The first three effects are treated within the crossing-point fit and are included in d_{\times} . The additional effects below that are considered separately.

Effect	Shift	Error
Error on $\langle z \rangle$		7
Higher-order gradients \hat{G}	69	10
Transverse field correction $\langle B_T^2 \rangle$	0	5
Hg EDM [8]	-0.1	0.1
Local dipole fields		4
$v \times E$ UCN net motion		2
Quadratic $v \times E$		0.1
Uncompensated G drift		7.5
Mercury light shift		0.4
Inc. scattering 199Hg		7
TOTAL	69	18

systematic error

PSI次期計画 n2EDM

統計精度向上

- UCN密度は現行のまま
- 容器直径を大きく
 47 cm → 80 cm

系統誤差を抑えるのが課題

- 上下対称セルを用いて磁場ドリフトの影響をキャンセル
 - 同時に統計の増加にも寄与
- 磁気シールドルームを新設

	Current	n2EDM	n2EDM	n2EDM	n2EDM	n2EDM	n2EDM
phase	2016 average	comm.	comm.	meas.	meas.	meas.	meas.
ID (cm)	47	47	47	80	80	100	100
coating	dPS	dPS	iC	dPS	iC	dPS	iC
α	0.75	0.8	0.8	0.8	0.8	0.8	0.8
$E (\mathrm{kV/cm})$	11	15	15	15	15	15	15
T(s)	180	180	180	180	180	180	180
N	15'000	50'000	100'300	121 ′ 000	292'000	160 ′ 000	400'000
$\sigma(d_n) \ (e \cdot cm)$ per day	11×10^{-26}	4.1×10^{-26}	2.8×10^{-26}	2.6×10^{-26}	1.7×10^{-26}	2.3×10^{-26}	1.4×10^{-26}
$\sigma(d_n) \ (e \cdot cm)$ 500 data days	5.0×10^{-27}	1.8×10^{-27}	1.3×10^{-27}	1.2×10^{-27}	7.5×10^{-28}	1.0×10^{-27}	6.4×10^{-28}

B. Lauss, nEDM2017

統計誤差の改善

現在の観測感度は統計誤差によってリミット →観測するUCNの個数を増やす

1. 観測容器を大きくする PSIの次期計画はこの方法

容器直径 47 cm → 80 cm

容器内の磁場の安定性・一様性を保つのが困難

2. UCN密度を増大させる

大強度超冷中性子源の開発

UCN密度~1UCN/cm³ → 250 UCN/cm³ PSI TUCAN

TUCANによる高強度UCN源開発

特徴

- ・加速器中性子 (核破砕反応)
 高い冷中性子束
 標的とHe-IIの距離を近くできる
 高い熱負荷
- ・UCNコンバータ:超流動ヘリウム
 長い蓄積時間
 中性子寿命:フォノンによるup-scattering
 (τ_s ∝ T⁻⁷)
 T = 36 s at T_n = 1.2 K

$$\tau_{s} = 600 \text{ s at } T_{He-II} = 1.2 \text{ K}$$

 $\tau_{s} = 600 \text{ s at } T_{He-II} = 0.8 \text{ K}$
(Cf. SD₂ : T_s = 24ms)

高い熱負荷の下で超流動ヘリウムを 低温に保ち続けることが重要

31

UCN Storage time

UCN production rate $\frac{d\rho_{UCN}}{dt} = P - \frac{\rho_{ucn}}{\tau}$ P : UCN production rate τ : Storage time

UCN density $\rho = P\tau (1 - exp(-t/\tau)) \propto P\tau$ long τ is important

UCN Storage Life Time

$$\begin{split} 1/_{\tau} &= 1/_{\tau_{phonon}} + 1/_{\tau_{abs}} + 1/_{\tau_{wall}} + 1/_{\tau_{\beta}} \\ \tau_{abs} &: \text{absorption by }^{3}\text{He} > 1000 \text{ s} \\ & purification to }^{3}\text{He}/^{4}\text{He} < 10^{-11} \\ \tau_{phonon} &: \text{phonon up-scattering} \quad T \sim 1.0 \text{ K} \\ \tau_{wall} &: \text{wall loss} & \text{clean surface} \\ \tau_{\beta} &: \beta \text{ decay (886s)} \end{split}$$

Purification of ⁴He by Heat Flush Method

Two Fluid Model

	Normal fluid	Superfluid
Viscosity	H _n	η _s = 0
Entropy	S _n	S _s = 0

<u>Heat Flush</u>

When heat apply,

- zero entropy superfluid is converted to be entropycarrying normal fluid
- Normal fluid excess around heater
- Counter flow
 - Normal mode (³He) : away from the heater
 - Super mode : towards to the heater

³He/⁴He <10⁻¹¹ is achievable by heat flush method P.C. Hendry and P.V.E. McClintock, Cryogenics 1987 Vol 27

Heater

Helium-3 cryostat

- to keep He-II temp. \sim 1.0 K
- decompressed Helium 3
 - use latent heat of evaporation
- ³He vs ⁴He
 - vapor pressure @ 0.8K
 - ³He: 3 Torr
 - ⁴He: 0.01 Torr
 - cooling power
 - @ 0.8K with 10, 000 m³/hour pumping
 - ³He: 15W
 - ⁴He: 0.13 W

プロトタイプUCN源

- RCNPでの原理検証
 - 加速器中性子+超流動ヘリウムコンバーターの組み合わせとして世界唯一
 - 陽子ビーム強度

400 MeV \times 1 μ A = 0.4 kW

- UCN密度 9 UCN/cm³ @ UCN源
 - Y. Masuda et al., Phys. Rev. Lett. 108, (2012), 134801
- TRIUMFへ移設 (2016年一)
 - UCN源専用陽子ビームラインにおいてUCN生
 成に成功
 - 陽子ビーム最大強度

500 MeV \times 40 μ A = 20 kW

Improvement of UCN Storage time

Year	τ _s	T _{Hell}	Improvement
2002	14 s	1.2K	
Jun 2006	29 s	0.9K	Use ³ He cryostat
Nov 2006	34 s	0.8K	Reduce Hell film perimeter (8.5 cm \rightarrow 5 cm)
Jul 2007	39 s	0.8K	Remove ³ He contamination
Apr 2008	47 s	0.8K	Fomblin coating
Dec 2009	61s	0.8K	Alkali cleaning
Feb 2011	81s	0.8K	High temperature baking (140°C)

UCN Source @ TRIUMF

1 month /year

Major Milestone

- \sim ~ 2016 springdedicated proton beam line for UCN(BL1U 500MeV, 40 \mu A \qquad completed
- ✓ 2016 fall commissioning for proton beam line & cold neutron production succeeded
- \checkmark 2017 2019 UCN production by the prototype UCN source
 - 2021 Upgrade UCN source

UCN production with the prototype source

- Nov 13, 2017: first UCN produced at TRIUMF
- 2017 2019 : UCN production
 - 1 month/year
- Experimental program
 - source and UCN hardware characterization
- UCN source performance
 - For 60 sec proton beam irradiation
 - Approx. 5×10^4 per shot at 1 μ A
 - $> 3 \times 10^5$ at 10 μ A
 - Storage life time : 35 sec

(81 sec at RCNP)

- Cooling power is not enough
 - UCN yield is not proportional to the beam current
 - Temperature of He-II increase

陽子ビーム出力を上げると超流動ヘリウム 温度が上がり、取り出せるUCN数が減る

陽子ビーム出力を変化させたときの

UCNカウント数の変化

38

UCN 源アップグレード

- 液体重水素(LD₂)モデレーター
 - 冷中性子フラックスの増加 (×2.5)
- 高い冷凍能力を持つヘリウム冷凍機
 - 超流動ヘリウムコンバーター体積の増加(×3)
 - 陽子ビーム-パワー増強 (×50)
 - 0.4 kW at RCNP -> 20 kW at TRIUMF
 - 超流動ヘリウムにかかる熱負荷
 - 8.1 W (容器の発熱を含む)

LD2 Moderator

Detailed engineering model

- Minimized wall thicknesses with ANSYS
- Minimized cost for D₂O (430 + 200 L) and graphite (reused)
- Optimized position above target
- UCN production: 1.4·10⁷ to 1.6·10⁷ UCN/s
- Max. heat load: 8.1 W @ 1.1 K
- 27 L He-II converter (+ ~50 L in guide)
- 125 L LD₂, max. heat load 63 W @ 20 K
- Storage lifetime in source: ~30 s
- Recently published: <u>10.1016/j.nima.2020.163525</u>

LD2 vs D20

	sD_2O	$1101\mathbf{LD}_2$	$2001\mathbf{LD}_2$
UCN production at 5 W heat load (s^{-1})	$0.40\cdot 10^7$	$1.02\cdot 10^7$	$1.33\cdot 10^7$
Heat load at 40 μ A (W)	5.1	7.6	5.4
Thickness of lower cold-moderator layer (cm)	14.0	17.5	23.1
Thickness of upper cold-moderator layer (cm)	9.3	7.5	15.8
Heat load on cold moderator at 40 μA (W)	60.5	50.0	36.7

factor 2.5 improvement

Superfluid helium UCN converter cooling

³He pumping

Components

- 1. Helium-3 cryostat
 - Have to be placed behind radiation shield
 - L = 2.0 m
 - High cooling power : \sim 11 W @1.0K,
 - 10 W: beam, 1 W: static

2. Heat Exchanger design

- Kapitza conductance
- 3. Heat transport in superfluid helium
 - Flow pattern
 - Superfluid turbulent
 - Gorter-Millink heat transfer

1. Helium-3 cryostat

- •液体ヘリウム3減圧により1K以下へ
 - 10 W @ 0.8 K
 - 飽和蒸気圧: 380 Pa @ 0.8 K
- ヘリウム3循環
 - ヘリウム3は貴重
 - 30万円 / 1L gas
 - 3つの液相・多段の熱交換器
 - 4.2K 液体ヘリウム4
 - 大気圧
 - 1.6 K 液体ヘリウム4
 - JT膨張 -> 750 Pa
 - 0.8 K 液体ヘリウム3
 - JT膨張 -> 380 Pa
 - 熱交換器
 - 気体の潜熱を有効活用

→ 次ページへ

- mass flow rate
 - 1.14 g/sec for 10 W cooling power

1. Helium-3 cryostat

多段の熱交換器

気体の潜熱を用いて有効的にシ ステムを冷却する

• HEX7

- 常温の気体ヘリウム3を4Kヘリウム 槽からの蒸発ガスで冷やす
 - 3He: 300 K -> 10 K
 - 3He エンタルピー
 - 2,074 J/g @ 300 K ↑ 約30倍
 - 75 J/g @ 10 K
- 2重管構造
- スペース削減のため3He, 4He排気管 の中に設置
 - 1 K pot, 3He potの蒸発ガスの潜熱も 有効利用
- HFX4 & HFX5
 - 4Kの3He or 4Heを3He pot or 1K potの 蒸発ガスで冷やす
 - JT液化効率(4He) JT膨張の後にどれだけ液として残るか
 - 4.2 K -> 1.6 K 59%
 - 2.8 K -> 1.6 K 79 % 44

大型ヘリウム3冷凍機開発

- ヘリウム3冷凍機
 - 設計
 冷却能力とヘリウム4消費量のバランス
 - 冷凍能力 10 W @ 0.8 K
 - 液体ヘリウム4消費量 < 40 L /hour
 - 製作
 - 熱交換器
 - 組み込み前の性能試験
 - 全体組み上げ

製作は完了し、冷却試験中@KEK

- ヘリウム3の代わりにヘリウム4を使用
- これまでのところ設計通りの性能を確認
 - 到達温度1.25 K (pumping speed: 2,000 m³/hour)
- 超流動リークなし
- 今後ヒーターによる熱負荷試験

insert of the cryostat

to 3He vacuum pump

to 4He vacuum pump

2. Kapitza Conductance

- Kapitza conductance is Conductance at the surface between liquid and solid is small at low temperature
- Kapitza conductance, $h_{\kappa}(T)$ is a function of temperature.
- There are several theory on Kapitza conductance.
 - Phonon limit
 - $h_{K}(T) \simeq 4500 T^{3} [W/m^{2}K]$
 - 2 10 times larger than measured
 - Khalatnikov theory
 - $h_{K}(T) \simeq 20 T^{3} [W/m^{2}K]$
 - 10 100 times smaller than measured
- Experimental data strongly depends on surface quality

Kapitza conductance between Copper and He-II Helium cryogenics, Steven W. Van Sciver

Cu Heat exchanger should be plated by Ni Kapitza conductance between Cu-Ni is large enough since junction is solid-solid

• Kapitza conductance between Ni and He-II

 $h_{K \text{ Ni}}(T) = f^*h_K_{K_Cu}(T)$ f = 0.61

• Kapitza conductance between Cu and 3He h_{κ} (HeII) = (1.2 – 2.6) h_{κ} (3He)

ex) $K_G = 40$, $T_{3He} = 0.8$ K, Q = 11 W • junction between 3He and Cu • $\Delta T_{Cu-3He} = 0.078$ K • $T_{Cu} = 0.878$ K

- junction between Cu and He-II
 - ΔTNi-Hell = 0.118
- $T_{He-II} = 0.996 \text{ K}$ Temperature difference in the heat exchanger can be neglected

Kapitza conductance Measurement

Kapitza conductance test at KEK

- Sample
 Material : OFHC
- Temperature range : 1.82 2.15 K

フィン形状でも同様の結果が得られるかテスト中

HEX1 prototype test

- 1/10 length model
- fin
 - 1mm width
 - 1mm gap
 - 2mm height
- installed to helium cryostat
- Cool down test
 - using 4He
 - test on going

3. Superfluid Helium Heat transport

Two Fluid Model

	Normal fluid	Superfluid
Viscosity	H _n	η _s = 0
Entropy	S _n	S _s = 0

- Ratio of super/normal component depends on temperature dependence.
- fraction of normal mode become small in low temperature.

Heat transport

- Since superfluid has no entropy, heat is transported only by normal fluid.
- Heat transport in low temperature (< 1K) become small because of small fraction of normal fluid

Gorter-Mellink equation

$$Q_{in} = \left(\frac{A^3}{L} \int_{T_L}^{T_H} f(T)^{-1} dT\right)^{1/3}$$

極低温で著しい熱コンダクタンスが低下 -> 1K 以下の実験値がないため実測計画中

Temperature distribution in our system

51

予想統計感度

UCN生成率	$2.6 imes 10^7$ UCN/sec
UCN密度 @ UCN源	6,400 UCN/cm ³
UCN密度@nEDM測定領域	250 Pol. UCN/cm ³

- UCN源アップグレード
 - LD2モデレーター
 - 新ヘリウム冷凍機による20kWオペレーション
- UCNトランスポート効率:4%
 - MCシミュレーションによる見積もり

統計精度

$$\sigma_d = \frac{\hbar}{2\alpha E t_c \sqrt{N}} \begin{bmatrix} E = 10 \text{kV/cm} & \text{N: UCN数} \\ t_c = 130 \text{s} & \forall \nu \forall 1 \vec{x} \neq 36 \text{ cm} \times \text{H} 15 \text{ cm} (15\text{L}) \times \vec{x} \vec{\forall} \nu \forall \nu \forall n = 7.8 \times 10^6 \text{ UCN/batch} \end{bmatrix}$$

- 4重磁気シールドルーム 外場の影響を下げる
- 上下 EDM セル
 磁場の変動を相殺する
- ◎ 「「「「「「「「」」」」 自己遮蔽型コイル

磁場の一様性の向上

• 共存磁束計

磁場の変化を監視する

Timeline

	2019	2020	2021	2022	2023
ヘリウム冷凍機					
製作					
試験					
輸送					
熱交換器					
要素試験					
設計					
製作					
LD2冷凍機					
設計					
製作					
UCN源インストール					
UCN源コミッショニング					
nEDM 装置開発、建設					
nEDM 探索実験					

Summary

- ・有限の値のEDMの存在 → T対称性の破れ
 (CPT対称を仮定すれば) CP対称性の破れ
- 様々な系でEDMの測定がされているが、いまだに有限の値は見つかっていない
- 中性子EDM探索実験
 - •現在のupper limit |*d*_n| < 1.8 × 10⁻² ecm (PSI, 2020)
 - 10⁻²⁷ ecm の感度を目標とした次期計画
 - n2EDM @ PSI
 - TUCAN
 - 高強度UCN源開発
 - UCN:物質容器に閉じ込め可能な面白い中性子
 - 超流動ヘリウムを用いたUCN源@TRIUMF (TUCAN)

回転座標系のベクトルの時間変化
S系:実験室系
S'系:S系に対し、角速度ωで回転している座標系
dA dA
$\frac{dt}{dt} = \frac{dt}{dt} + \omega \times A$
ac_{S} ac_{S}

$$\left.\frac{d\boldsymbol{M}}{dt}\right|_{S} = \boldsymbol{\gamma}\,\boldsymbol{M}\times\boldsymbol{H}$$

S′系

$$\frac{dM}{dt}\Big|_{S'} = \frac{dM}{dt}\Big|_{S} - \omega \times M$$
$$= \gamma M \times (H + \frac{\omega}{\gamma})$$

z方向に静磁場H₀、xy平面に回転磁場H₁がかかっているとき、

 $\omega_0 = \gamma H_0$ (resonant frequency) の時、S'系ではH = (0,H1,0)となり、スピンンはy'z'平面上 を回転する

rotating system (S')

rotating speed : ω

Prototype UCN Source

Previous UCN source

He-II bottle

 Φ 16cm , L 41cm, Volume = 8L

Al of 2mm thickness, inner wall coated with nickel

Surrounded by D₂O moderator (ice, water)

Cryostat

keep He-II the temperature by ³He pumping

³He is pre-cooled by ⁴He pumping

UCN guide

 Φ 8.5 cm, L = 3 m

1.25m high from He-II bottle

Improvement of UCN Storage time

Year	τ _s	T _{Hell}	Improvement
2002	14 s	1.2K	
Jun 2006	29 s	0.9K	Use ³ He cryostat
Nov 2006	34 s	0.8K	Reduce Hell film perimeter (8.5 cm \rightarrow 5 cm)
Jul 2007	39 s	0.8K	Remove ³ He contamination
Apr 2008	47 s	0.8K	Fomblin coating
Dec 2009	61s	0.8K	Alkali cleaning
Feb 2011	81s	0.8K	High temperature baking (140°C)

remove He contamination is important

UCN Production by the Prototype source

Storage life time measurement Counting UCN after valve opening

UCN is produced and hold in the UCN bottle and guide After time delay UCN valve open

Storage Lifetime : 81 sec UCN density 26UCN/cm³ Ec = 90 neV 400 MeV \times 1 μ A = 0.4 kW Y, Masuda et. al., Phys. Rev. Lett. 108, (2012), 134801

UCN source in the world

	Source Type		UCN density	Мах	Lifetime [s]
	neutron Moderator		$\rho \propto Ec^{3/2}$	energy Ec [neV]	
Ours @ RCNP/TRIUMF	Spallation	He-II	26@1µA	90	150
Ours @ future	Spallation	He-II	1300 pol	90	150
Sussex-RAL-ILL	Beam	He-II	1000	250	150
SNS	Beam	He-II	150	134	500
PNPI	Reactor	He-II	12000	250	23
Los Alamos	Spallation	SD ₂	200	180	1.6
PSI	Spallation	SD ₂	1000	250	6
Munich	Reactor	SD ₂	1000 pol	250	**

There are a lot of UCN facility (including plan)

HEX1 development

- HEX1 prototype1
 - annular fins
 - push up liquid ?
- HEX1 prototype 2
 - vertical fins
 - fin pitch optimization is necessary
- HEX1 prototype 3
 - full size model
 - not final design
 - fin: annular or vertical or no fin
 - less 3He model
 - will be installed first cooling at TRIUMF UCN production?
 - Final model will be installed later

prototype 1

prototype 2

Fig. 1. GRANIT spectrometer.

Fig. 3. Maximum probability for a neutron to leave the ground state is shown as a function of the excitation frequency for two different excitation times.

M. Kreuz et al. NIM A 611 (2009) 326–330 D. Roulier et al. Advances in High Energy Physics Volume 2015, Article ID 730437,

magnetically induced resonance transition

- extraction mirror and scatter
 - select low vertical velocity component
- transport mirror
 - a periodic magnetic field induce resonant transition between quantum states
- absorber
 - filter quantum state

Neutron detector

Since neutron has no charge, it is not possible to detect directly by the electrical signal

- Use nuclear reaction (neutron converter)
 - ³He (σ = 5333 barn)
 - ${}^{3}\text{He} + n \rightarrow {}^{3}\text{H} + p + 0.765 \text{ MeV}$
 - ⁶Li (σ = 940 barn)
 - ${}^{6}\text{Li} + n \rightarrow \alpha + {}^{3}\text{H} + 4.78 \text{ MeV}$
 - ¹⁰B (σ = 3835 barn)
 - ${}^{10}B + n \rightarrow \alpha + {}^{7}Li + \gamma + 2.79 \text{ MeV}$
 - ${}^{10}\text{B} + n \rightarrow \alpha + {}^{7}\text{Li} + 2.79 \text{ MeV}$ 6.1%

2 Dimensional UCN Detector

S. Kawasaki et.al. , NIM A 615 (2010) 42-47

• C C D sensor

HAMAMATSU S71710-0909

Active Area	$12.288 \times 12.288 \text{ mm}^2$
Number of Pixels 512 × 512	
Pixel Size	$24 \times 24 \ \mu m^2$
Full Well Capacity (Vertical)	300 ke-
Full Well Capacity (Horizontal) 600 ke ⁻	
Dark Current Max. 0°C	600 e ⁻ /pixel/s
Readout Noise	8 e ⁻ rms

neutron^o gonv(rterMeV)+⁷Li(0.84MeV)+ γ (0.48MeV) 93.9%

 $\rightarrow \alpha (1.78 \text{MeV}) + {^7\text{Li}(1.01 \text{MeV})}$ 6.1%

 $n+{}^{6}Li \rightarrow \alpha(2.05 \text{MeV})+{}^{3}\text{H}(2.73 \text{MeV})$

Fine-grained nuclear emulsion

High spatial resolution 3D tracking detector

particle and a ⁷Li are emitted back-toback from neutron absorption by ¹⁰B. One of them will be detected inside the emulsion layer. The absorption point will be determined by extrapolating the track to the B₂C layer.

N. Naganawa et al. POS (KMI2017) 077

Crystal EDM

- 結晶内を透過する冷中性子のスピン位相の変化を観測
- 結晶内の大きな有効電場を用いることによって感度をあげる
- 有効電場・体積の大きな結晶を用いるのが鍵
- Current best value

dn = (2.5 \pm 6.5stat \pm 5.5sys) \times 10⁻²⁴ ecm at ILL V.V. Fedorov et al Phys. Lett. B 694, 22 – 25 (2010)

- 精度を上げた実験がJ-PARCやESSで計画されている
 - *E* :strength of applied electric field

Sensitivity of nEDM experiment
$$\sigma(d_n) \propto \frac{1}{E\tau\sqrt{N}}$$

- τ : interaction time
- N : neutron counts

	Free flight metod	Crystal diffraction method	UCN method
interaction tome τ [s]	$\sim 10^{-1}$	$\sim 10^{-3}$	$\sim 10^{2}$
electric field E [V/cm]	$\sim 10^{4}$	$\sim 10^{8}$	$\sim 10^{4}$
neutron counts n [n/s]	$\sim 10^{8}$	$\sim 10^{4}$	$\sim 10^{2}$
sensitivity σ(d _n)	$\sim 10^{-25} / \sqrt{Day}$	$\sim 10^{-25} / \sqrt{Day}$	$\sim 10^{-25}/\sqrt{Day}$

パルス中性子源を用いた結晶回折によるnEDM探索

67