NEW RESULTS FROM T2K EXPERIMENT

Atsuko K. Ichikawa for T2K collaboration 2011/June/15, 京大談話会

T2K COLLABORATION

International collaboration (~500 members, 59 institutes, 12 countries)

目次

- 1. ニュートリノ振動の現状
- 2. Introduction of T2K experiment
- 3. T2K history
- 4. Document 3/11
- 2. Search for v_e appearance

with data upto 11th March

(1.43 x 10²⁰ protons on target)

3. Conclusion and Prospect

THREE FLAVOR MIXING IN LEPTON SECTOR ニュートリノには、3世代あるので、3世代で混合を考えるべき

Weak eigenstates

mass eigenstates

$$\begin{array}{c}
\mathbf{v}_{e} \\
\mathbf{v}_{\mu} \\
\mathbf{v}_{\tau} \\
\mathbf{v}_{\tau} \\
\end{array} = \mathbf{U}_{MNS} \mathbf{V}_{M}^{CP} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\
\end{array} \\
\begin{array}{c}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3} \\
\mathbf{m}_{3} \\
\mathbf{m}_{3} \\
\mathbf{m}_{3} \\
\mathbf{m}_{3} \\
\mathbf{m}_{3} \\
\mathbf{m}_{4} \\
\mathbf{m}_{4} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3} \\
\mathbf{m}_{3} \\
\mathbf{m}_{4} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3} \\
\mathbf{m}_{4} \\
\mathbf{m}_{4} \\
\mathbf{m}_{4} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3} \\
\mathbf{m}_{4} \\
\mathbf{m}_{4$$

わかっていること	m^2 m^2
$\theta_{12} = 34^\circ \pm 1^\circ$	
$\theta_{23} = 45^{\circ} \pm 8^{\circ} (90\% \text{CL})$ $\theta_{13} \le 12^{\circ} (90\% \text{CL})$	
(0.8 0.55 < 0.21)	人何政、クオークとレフトンでこんな にも混合の様子が異なるのか? ハーポイント
$U_{MNS} \approx \begin{vmatrix} -0.4 & 0.6 & 0.7 \end{vmatrix}$	U ₁₃ CU ₂₃ ルー 「ハイノト CP(δ)は?
$(0.4 \ 0.6 \ 0.7)$	プトンセクターでもCPが破れてい ることが望ましい。
(0.97 0.23 0.004)	
$U_{CKM} \approx \left \begin{array}{c} 0.23 & 0.97 & 0.04 \end{array} \right $	
$\left(\begin{array}{ccc} 0.008 & 0.04 & 1 \end{array}\right)$	
δ~60°	

$$\begin{split} & \bigvee_{\mu} \longrightarrow \bigvee_{e} \text{ APPEARANCE} \\ & \text{Leading term at around atm.} \\ & \text{oscillation maximum} \\ & P(\nu_{\mu} \rightarrow \nu_{e}) = \underbrace{4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ & +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \quad \text{CPC} \\ & -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \quad \text{CPV} \\ & +4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{13}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \quad \text{CPV} \\ & -8C_{13}^{2}S_{13}^{2}S_{23}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \quad \text{CPV} \\ & -8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E} \quad (1 - 2S_{13}^{2}) \quad \text{Matter effect} \\ & \text{(small in T2K)} \\ & a \rightarrow -a, \delta \rightarrow -\delta \text{ for } P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}) \quad \text{CP violating term introduced by} \\ & \text{interference btw. } \theta_{13} \text{ and } \theta_{12} \\ \end{array}$$

$$a = 7.56 \times 10^{-5} [\text{eV}^2] \cdot \left(\frac{\rho}{[\text{g/cm}^3]}\right) \cdot \left(\frac{E}{[\text{GeV}]}\right)$$

L=295km, <E_v> ~0.6GeV

DESIGN PRINCIPLE OF T2K

I High Intensity v_{μ} beam from J-PARC

Super-Kamiokande(SK) as a far neutrino detector

- 22.5kt fiducial volume mass
- Excellent performance for single particle event

D

• $v_e + n \rightarrow e + p$ (T2K v_e signal)

Less high energy tail by off-axis beam method

First application at long baseline experiment

FAR DETECTOR (SUPER-K)

1km

2km

Atotsu

LINAC Electronies hui Stable operation since April 1996 Water Cherenkov detector w/ fiducial volume 22.5kton **Dead-time less DAQ system (2008~) Detector performance is well-matched at** sub GeV 41.4m **Excellent performance for single particle** event Good e-like(shower ring) / µ-like separation (next page) Ikeno-yama Kamioka-cho, Gifu (2700mwe) Japan 3km 39.3m Mozumi ~11000 x 20inch PMTs (inner detector, ID)

ELECTRON-LIKE AND MUON-LIKE EVENT AT SK

- <0.5% at energy peak
- π⁰ from Neutral Current interaction

OFF-AXIS BEAM : INTENSE & NARROW-BAND BEAM Far Detector

0.5

1.5

2

2.5

3.5

4 GeV

3

Pseud monochromatic beam utilizing pion decay kinematics T2K off-axis angle is 2.5° peak energy at oscillation max. (~0.6GeV at L=295km) less high energy tail maximize physics sensitivity

OFF-AXIS NEAR DETECTOR (ND280)

vµ CC events rate measurement in present analysis

0.2 T UA1 magnet

Fine Grained Detector (FGD)

- scintillator bars target (water target in FGD2)
- 1.6ton fiducial mass for analysis

Time Projection Chambers (TPC)

• better than 10% dE/dx resolution

HISTORY

- 1990年代東大原子核研究所大型ハドロン計画(JHF)
- 1999 原研の中性子科学研究計画との統合計画(J-PARC)
- 2001.4 J-PARC本予算スタート6年で(vは2期)
- 2003.8 文科省ニュートリノ予算を財務省へ
- 2003.10 総合科学技術会議ニュートリノをCランクに格付け
- 2003.11 プロジェクト再検討
- 2003.12 財務省ニュートリノプロジェクト認める

-- 建設 --

- 2009.4 ニュートリノ施設のコミッショニング開始(数ショット)
- 2009.11 J-PARCで最初のニュートリノ観測
- 2010.1 物理データ取得開始 (<20kW)
- -- 強度化 --
- 2010.2 Super-Kで最初のJ-PARCニュートリノを観測 (~30kW)
- 2011.3.10 ~145kW

TOTAL # OF PROTONS USED FOR ANALYSIS

Run 1 (Jan. '10 - June '10)

- 3.23 x 10¹⁹ p.o.t. for analysis
- 50kW stable beam operation

Run 2 (Nov. '10 - Mar. '11)

- 11.08 x 10¹⁹ p.o.t. for analysis
- ~145kW beam operation

Total # of protons used for this analysis is 1.43 x 10²⁰ pot 2% of T2K's final goal and ~5 times exposure of the previous report

v BEAM STABILITY

Stability of v beam direction (INGRID)

v beam dir. stability < 1mrad

Stability of v interaction rate normalized by # of protons (INGRID)

integrated day(1 data point / 1day)

DOCUMENT 3/11

加速器メンテナンスのためビームは停止中

15:00より Run1の結果をKEKにて発表予定

京都では、物二教室発表会開催中

14:46 最初の地震 → 最大震度 6強

東海にいたT2K関係者の多くが、(TV会議で)セミナーに出席しようと 敷地内を移動中

京大の高エネグループ院生 5名を含む

地震直後に携帯で京都と連絡

人の被害はない模様

その後、数日間は連絡を取れなくなる

2011.3.24.

3月24日のリニアック地下部

3月17日に1センチでの水であったのが、3月24日には10センチに。 約100トンの水。3月25日より自家発電機で排水を開始。

2011.3.17.

南側 (ビーム上流から下流を見る)

DOCUMENT 3/11

東海地区は、電気、ガス、水が止まる。余震がひどい

交通手段も麻痺(高速道路、鉄道ともに止まる。一般道も信号がつかない。ガソリンが手に入らない)

院生は、コンビニエンスストアで、食糧を調達

3/14 KEKがバスを手配し、ユーザーをすべて東海から引き上げる

院生は無事、帰京

研究所はしばらく閉鎖

その後、空間放射線レベルが上がる。東海での上昇は、最大3~4µSv/h。 すぐに下がる。

1週間後から徐々にInspection start

(3/24 市川、車で帰宅。ガソリン、納豆が手に入らない)

4月に入ってから、高速道路、鉄道も復旧。徐々にユーザーも来訪可に。 損害は大きいが、修復可能!

Search for v_e appearance

ANALYSIS OVERVIEW

- **1.** Apply v_e selection criteria to the events at far detector (SK)
- 2. Compare the observed number of events and the expected number of events (for $sin^22\theta_{13}=0$) \rightarrow search for v_e appearance

Contents in this section

- ∻ ve selection criteria
- The expected number of events at Far detector using *Hadron (pion) production measurement*

& *ND event rate measurement*

- Systematic uncertainty
- Observation at Far detector & Results

ve selection criteria

- The expected number of events at Far detector
- Systematic uncertainty
- Observation at Far detector & Results

Ve SELECTION AT FAR DETECTOR (SK)

The selection criteria were optimized for initial running condition

762.5 days

Number of Events /

The selection criteria were fixed before data taking started to avoid bias

7 selection cuts

- 1. T2K beam timing & Fully contained (FC) (synchronized with the beam timing, no activities in the OD)
- 2. In fiducial volume (FV)

(distance btw recon. vertex and wall > 200 cm)

* Events too close to the wall are difficult to accurately reconstruct vertex

* Reject events which are originated outside the ID

* Define FV 22.5kton

3. Single electron(# of ring is one & e-like)

- 6. Reconstructed invariant mass $(M_{inv}) < 105 \text{ MeV/c}^2$
 - * Suppress NC π⁰ background

Find 2nd e-like ring by forcing to fit light pattern under the 2 e-like rings assumption, and then reconstruct invariant mass of these 2 e-like rings

Invariant mass (MeV/c²)

350

300

250

200

150

100

50

50

7. Reconstructed energy (E_{rec}) < 1250 MeV

The expected number of events at Far detector with 1.43 x 10²⁰ p.o.t.

- Systematic uncertainty
- Observation at Far detector & Results

EXPECTED # OF EVENTS AT FAR DETECTOR

Normalization by Near detector both for signal and background

$$R_{ND}^{\mu, Data}$$

 $\frac{1}{5} \frac{SK}{MC}$

ND v_{μ} event rate

Measurement of the number of inclusive v_{μ} charged-current events in ND per p.o.t. using data collected in Run 1 (2.88 x 10¹⁹ p.o.t.)

Stability of the beam event rate is confirmed by INGRID measurement INGRID v int. rate stability Run 1+2 / Run 1 < 1%

 $F/N \text{ ratio for } v_{e} \text{ signal event } \leftarrow \text{ systematic error cancelation} \\ (flux) \times (osc. prob.) \times (x \text{-section}) \times (efficiency) \times (det. mass) \\ \frac{N_{SK \ \nu_{e} \ sig.}^{MC}}{R_{ND}^{\mu, \ MC}} = \frac{\int \Phi_{\nu_{\mu}}^{SK}(E_{\nu}) \cdot P_{\nu_{\mu} \rightarrow \nu_{e}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}} \cdot \frac{M^{SK}}{M^{ND}} \cdot POT^{SK}$

NEUTRINO FLUX PREDICTION

Predicted neutrino flux

Predicted neutrino flux

THE EXPECTED NUMBER OF EVENTS FOR $SIN^22\theta_{13}=0$

The expected number of events with 1.43 x 10²⁰ p.o.t.

N^{exp}SK tot. = 1.5 events

v_e selection criteria

The expected number of events at Far detector

Systematic uncertainty

Observation at Far detector & Results

SYSTEMATIC UNCERTAINTY ON NEXPSK

error source

 $O(1) \nu$ flux

O(2) ν int. cross section

- (3) Near detector
- O(4) Far detector
 - (5) Near det. statistics

Total

 $\int \Phi_{\nu_{\mu}(\nu_{e})}^{\mathrm{SK}}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \frac{\sigma(E_{\nu})}{\sigma(E_{\nu})} \cdot \epsilon_{SK}(E_{\nu}) dE_{\mu}$ $\int \Phi_{\nu_{\mu}}^{\rm ND}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}$

NEUTRINO FLUX UNCERTAINTY

Uncertainties in hadron production and interaction are dominant sources

n,p

graphite target

proto

error source

Error source

Pion production

• NA61 systematic uncertainty in each pion's (p,θ) bin

Kaon production

 Used model (FLUKA) is compared with the data(Eichten et. al.) in each kaon's (p,θ) bin

Secondary nucleon production

 Used model (FLUKA) is compared with the experimental data

Secondary interaction cross section

 Used model (FLUKA and GCALOR) is compared with the experimental data of interaction x-section (π, K and nucleon)

Summary of v flux uncertainties on N^{exp}_{SK} for sin²2 θ_{13} =0

		$N^{exp}_{SK}\;=\;$	$R_{ND}^{\mu,\;Data}$	×	$rac{I^{oldsymbol{N}SK}}{R_{ND}^{\mu,\ MO}}$
Error source	$R^{\mu,\ MC}_{ND}$	N_{SK}^{MC}			
Pion production	5.7%	6.2%			
Kaon production	10.0%	11.1%		Ha	adron
Nucleon production	5.9%	6.6%		pro	duction
Production x-section	7.7%	6.9%		& I//l	
Proton beam position/profile	2.2%	0.0%			
Beam direction measurement	2.7%	2.0%			
Target alignment	0.3%	0.0%			
Horn alignment	0.6%	0.5%			
Horn abs. current	0.5%	0.7%			
Total	15.4%	16.1%			

NTMC

The uncertainty on N^{exp}_{SK} due to the beam flux uncertainty is **8.5%** Error cancellation works for some beam uncertainties

VINT. CROSS SECTION UNCERTAINTY

Evaluate uncertainty on F/N ratio by varying the cross section within its uncertainty

Main v interaction in each event category

NC background : NC1 π^0 Beam v_e background : v_e CCQE Signal : v_e CCQE ND CC event : CCQE(50%) CC1 π (23%)

Cross section uncertainty relative to the CCQE total x-section Process CCQE energy dependent ($\sim \pm 7\%$ at 500 MeV) CC 1π $30\% (E_{\nu} < 2 \text{ GeV}) - 20\% (E_{\nu} > 2 \text{ GeV})$ CC coherent π^0 100% (upper limit from [30]) CC other $30\% (E_{\nu} < 2 \text{ GeV}) - 25\% (E_{\nu} > 2 \text{ GeV})$ NC $1\pi^0$ $30\% (E_{\nu} < 1 \text{ GeV}) - 20\% (E_{\nu} > 1 \text{ GeV})$ NC coherent π 30% NC other π 30%

energy dependent ($\sim \pm 10\%$ at 500 MeV)

Uncertainty of $\sigma(v_e)/\sigma(v_\mu) = \pm 6\%$

FSI

- error source (1) ν flux (2) ν cross section (3) Near detector (4) Far detector
 - (5) Near det. statistic

$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{\mathrm{SK}}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu})}{\int \Phi_{\nu_{\mu}}^{\mathrm{ND}}(E_{\nu}) \cdot \sigma(E_{\nu})} \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}$$

Cross section uncertainties are estimated by Data/MC comparison, model comparison and parameter variation

v INT. CROSS SECTION UNCERTAINTY ON N^{EXP}sk FOR SIN²2θ₁₃=0

error source
(1) ν flux
(2) ν cross section
(3) Near detector
(4) Far detector
(5) Near det. statisti

Error source	syst. error on N_{SK}^{exp}	
CC QE shape	3.1%	-
$\mathrm{CC} 1\pi$	2.2%	
CC Coherent π	3.1%	
CC Other	4.4%	
NC $1\pi^0$	5.3%	
NC Coherent π	2.3%	
NC Other	2.3%	
$\sigma(u_e)$	3.4%	Uncertainty in pion's
FSI	10.1%	← final state interaction
Total	14.0%	is dominant

The uncertainty on N^{exp}_{SK} due to the v x-section uncertainty is **14%** (sin²2 θ_{13} =0)

FAR DETECTOR UNCERTAIN

Uncertainty due to the SK detector uncertainty

Evaluation using control sample

$$\frac{\int \Phi_{\nu_{\mu}(\nu_{e})}^{\mathrm{SK}}(E_{\nu}) \cdot P_{osc.}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{SK}(E_{\nu}) \ dE_{\nu}}{\int \Phi_{\nu_{\mu}}^{\mathrm{ND}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \epsilon_{ND}(E_{\nu}) \ dE_{\nu}}$$

error source

(2) ν cross section

(3) Near detector

Far detector

(5) Near det. statistic

(1) ν flux

(4)

One of big error sources:

detection efficiency of NC $1\pi^0$ background

control sample with one data electron + one simulated y

Summary of Far detector systematic uncertainty

Error source	$\frac{\delta N^{MC}_{SK \ \nu_e \ sig.}}{N^{MC}_{SK \ \nu_e \ sig.}}$	$\frac{\delta N^{MC}_{SK\ bkg.\ tot.}}{N^{MC}_{SK\ bkg.\ tot.}}$	
π ⁰ rejection	_	3.6%	
Ring counting	3.9%	8.3%	Evaluated by
Electron PID	3.8%	8.0%	atmospheric
Invariant mass cut	5.1%	8.7%	v _e enriched data
Fiducial volume cut etc.	1.4%	1.4%	
Energy scale	0.4%	1.1%	
Decay electron finding	0.1%	0.3%	
Muon PID	_	1.0%	
Total	7.6%	15%	

 $\rightarrow \mbox{The total uncertainty on $N^{MC}_{SK tot.}$ is $14.7 \% (sin^22\theta_{13}=0)$ (uncertainty on the background + solar term oscillated v_e) }$

TOTAL SYSTEMATIC UNCERTAINTIES

Summary of systematic uncertainties on N^{exp}_{SK total.} for sin²20₁₃=0 and 0.1

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	cf.
O(1) Beam flux	$\pm 8.5\%$	$\pm 8.5\%$	$\sin^2 2\theta_{13} = 0$: #sia = 0.1 #bka = 1.4
$\mathbf{O}(2)$ ν int. cross section	$\pm 14.0\%$	$\pm 10.5\%$	$sin^2 2A_{12} = 0.1$
(3) Near detector	$^{+5.6}_{-5.2}\%$	+5.6% -5.2%	#sig = 4.1 #bkg = 1.3
O(4) Far detector	$\pm 14.7\%$	$\pm 9.4\%$	
(5) Near det. statistics	$\pm 2.7\%$	$\pm 2.7\%$	
Total	$+22.8\% \\ -22.7\%$	$+17.6\ \%$)
		(due to	small Far det.

uncertainty for signal)

 $N^{exp}_{SK tot.} = 1.5 \pm 0.3$ events for sin²2 θ_{13} =0 (w/ 1.43 x 10²⁰ p.o.t.)

v_e selection criteria

- The expected number of events at Far detector
- Systematic uncertainty
- Observation at Far detector & Results

SK EVENTS IN BEAM TIMING

Events in the T2K beam timing synchronized by GPS

 $\Delta T_0 = T_{GPS} \otimes SK - T_{GPS} \otimes J - PARC - TOF(~985 \mu sec)$

NUMBER OF T2K EVENTS AT FAR DETECTOR

Number of events in on-timing windows (-2 \sim +10 μ sec)

Class / Beam run	RUN-1	RUN-2	Total	non-beam
POT (x 10 ¹⁹)	3.23	11.08	14.31	background
Fully-Contained (FC)	33	88	121	0.023

The accidental contamination from atmospheric v background is estimated using the sideband events to be 0.023

APPLY v_e **EVENT SELECTION**

defined before the data collection 6 selection cuts in addition FC cut

Fiducial volume cut

(distance between recon. vertex and wall > 200cm)

Single electron cut (# of ring is one & e-like)

Invariant mass cut ($M_{inv} < 105 \text{ MeV/c}^2$)

Reconstructed v energy cut (E_{rec} < 1250 MeV) : *Final cut*

A v_e **CANDIDATE EVENT**

Super-Kamiokande IV

T2K Beam Run 0 Spill 1039222 Run 67969 Sub 921 Event 218931934 10-12-22:14:15:18 T2K beam dt = 1782.6 ns Inner: 4804 hits, 9970 pe Outer: 4 hits, 3 pe Trigger: 0x80000007 D_wall: 244.2 cm e-like, p = 1049.0 MeV/c

Charge(pe)

visible energy : 1049 MeV # of decay-e : 0 2γ Inv. mass : 0.04 MeV/c² recon. energy : 1120.9 MeV

FURTHER CHECK

Check several distribution of ve candidate events

Vertex distribution of ve candidate events

These events are clustered at large R \rightarrow Perform several checks. for example

- * Check distribution of events outside FV \rightarrow no indication of BG contamination
- * Check distribution of OD events \rightarrow no indication of BG contamination
- * K.S. test on the R² distribution yields a p-value of 0.03

RESULTS FOR v_e **APPEARANCE SEARCH** WITH 1.43 X 10²⁰ P.O.T.

The observed number of events is **6**

The expected number of events is 1.5 ± 0.3

for $sin^2 2\theta_{13} = 0$

Under the θ_{13} =0 hypothesis, the probability to observe six or more candidate events is 0.007 (equivalent to 2.5 σ significance)

ALLOWED REGION OF SIN²2 θ_{13} AS A FUNCTION OF ΔM^2_{23}

Feldman-Cousins method was used

90% C.L. interval & Best fit point (assuming $\Delta m_{23}^2=2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23}=1$, $\delta_{CP}=0$) 0.03 < $\sin^2 2\theta_{13}$ < 0.28 0.04 < $\sin^2 2\theta_{13}$ < 0.34

sin²2θ₁₃ = 0.11

 $sin^2 2\theta_{13} = 0.14$

T2K NEXT STEPS

Aim for firmly establishing v_e appearance and better determining the angle θ_{13} J-PARC復旧スケジュール (@2011.5.20)

CONCLUSION

We reported new results on $v_{\mu} \rightarrow v_{e}$ oscillation analysis based on 1.43 x 10²⁰ p.o.t. (2% exposure of T2K's goal)

- The expected number of events is 1.5 ± 0.3 (sin²2 $\theta_{13} = 0$)
- 6 candidate events are observed
- Under θ₁₃=0 hypothesis, the probability to observe 6 or more candidate events is 0.007 (equivalent to 2.5σ significance)
- 0.03 (0.04) < $\sin^2 2\theta_{13}$ < 0.28 (0.34) at 90% C.L. for normal (inverted) hierarchy (assuming Δm^2_{23} =2.4 x 10⁻³ eV², $\sin^2 2\theta_{23}$ =1, δ_{CP} =0)

Indication of v_e appearance

Resume experiment as soon as possible and improve analysis method to conclude v_e appearance phenomenon

 v_{μ} disappearance result with 1.43 x 10²⁰ p.o.t. data will be reported this summer