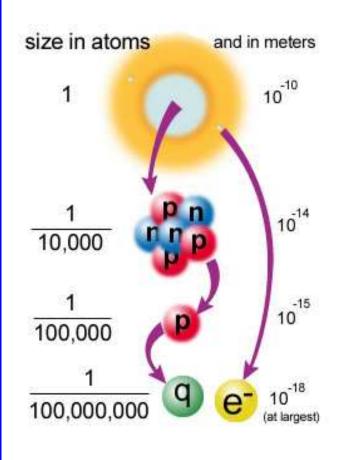
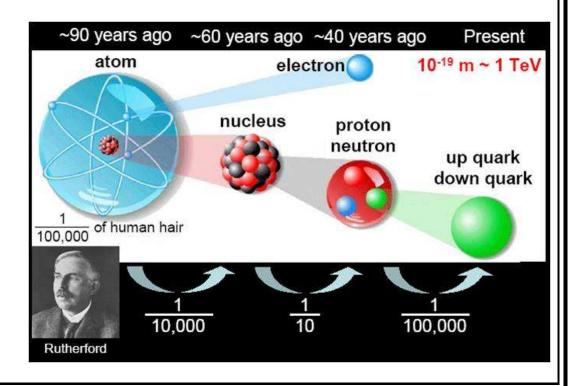


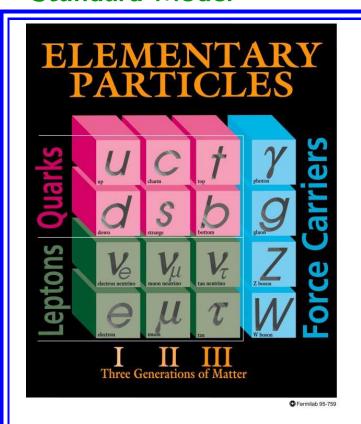
CP Violation and Hot Topics From BABAR Experiment

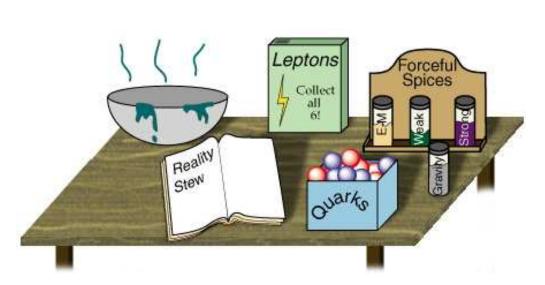
Prof. Romulus GodangUniversity of South Alabama

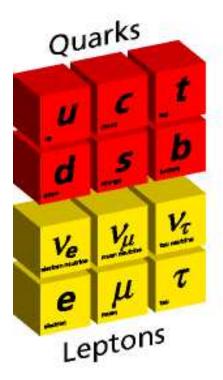
Wednesday, March 14, 2012
Department of Physics

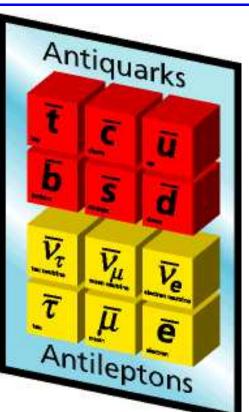





What is the World Made of?

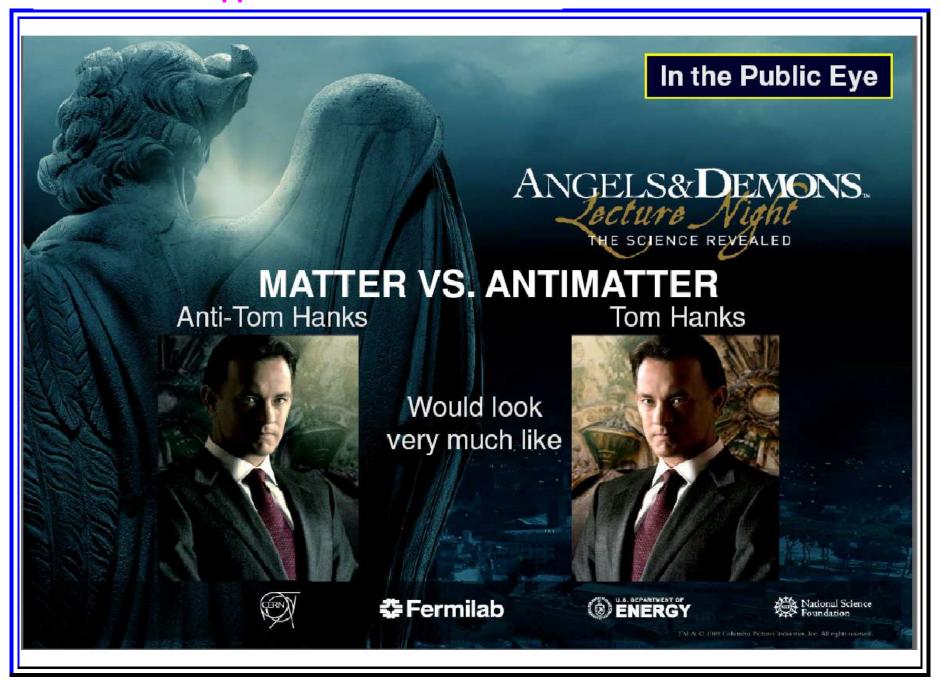

- ☐ Scientists originally thought the nucleus was a fundamental particle but
 - → nucleus is made of protons and neutrons
 - → protons and neutrons are made of quarks


Standard Model



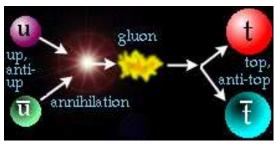
- ☐ All the known matter particles are composites of 6 quarks and 6 leptons and they interact by exchanging force carrier particles:
 - \hookrightarrow Electromagnetic (γ) , Weak (Z^0, W^{\pm}) , and Strong (gluons)

Standard Model



- ☐ Hadrons are composite particles made of quarks:
 - Baryons are any hadron which is made of three quarks (qqq)
 - \hookrightarrow proton (uud) and antiproton $(\bar{u}\bar{u}\bar{d})$
 - Mesons contain one quark (q) and one antiquark (\bar{q})
 - $\hookrightarrow B^0$ $(dar{b})$ and $ar{B}^0$ $(ar{d}b)$

The Birth of the Universe (13.7 Billion Years Ago)

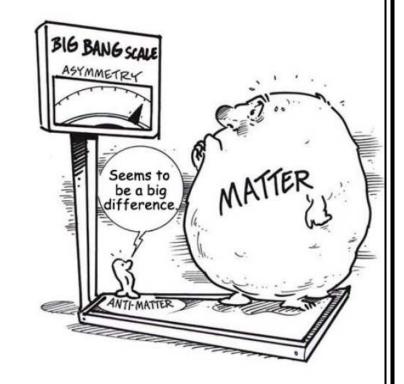

CWR A Brief History of Time History of the Universe > 10-43 - 10-37 secs > Gravity and Strong forces separate out ≥ 10⁻³⁵ secs > Inflation ▶ 10⁻¹⁰ seconds Inflation Quark-AntiQuark Annihilation (CP Violation) > 10 microseconds > Quarks form protons, neutrons > 380,000 years (last scatter) Nuclei capture electrons to form atoms; universe transparent to light W. Z bosons 1.0 Gy Galaxies; 6 Gy: Dark Energy Dominates > 13.7 Gigayears: Today Particle Data Group, LBNL @ 2000. Supported by DCE and NS After the Big Bang exploded with enormous energy, the universe began to cool-down that has lasted until our own time CP Violation process occurred 10^{-10} seconds after the explosion.

What Was Happened to the Antimatter

What Was Happened to the Antimatter?

- \square How do we know there is almost no antimatter around ?
 - When a matter and antimatter meet, they annihilate into pure energy
 - → leaving only photons and neutrinos

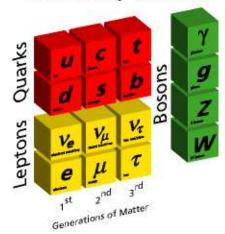
- The fact: we don't see this kind of energy in our daily life
- ☐ Can we see the evidence of antimatter?


☐ The magnetic field makes negative particles curl left, positive particles curl right

Why is the Universe Exclusively Made of Matter?

- □ Andrei Sakharov (JETP, 5, No 1, 1967)
- 1. Baryon violating interactions
- 2. Thermal non-equilibrium situation
- 3. CP Violation

Nobel Peace Prize in 1975 →

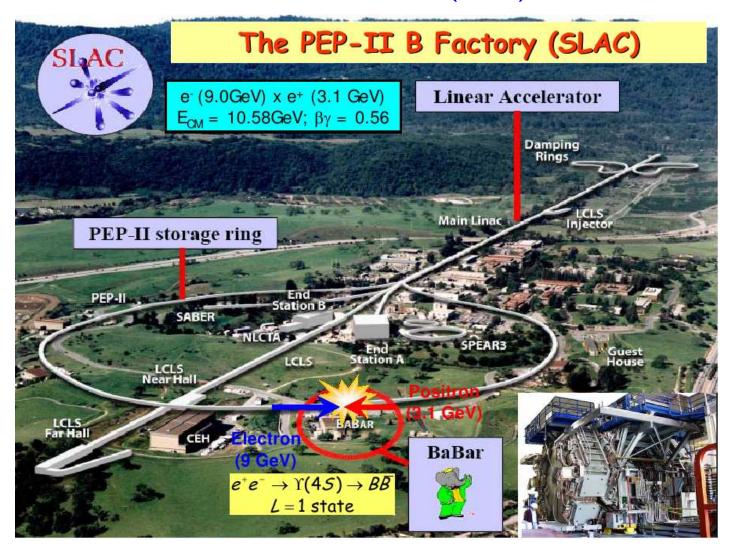


- ☐ Testing the Sakharov's criteria:
- 1. No evidence that baryon number is violated
- 2. In thermal equilibrium particles are identical → No asymmetry

CP violation is necessary to understand matter-antimatter imbalance

CP Violation in B Mesons

Elementary Particles

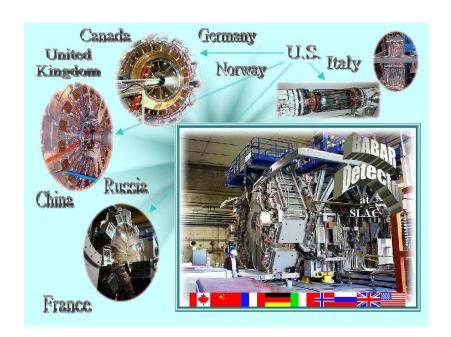

- ☐ In 1962: Nicola Cabibbo introduced 2 generation quarks
- ☐ In 1972: Kobayashi and Maskawa introduced 3 generation quarks with

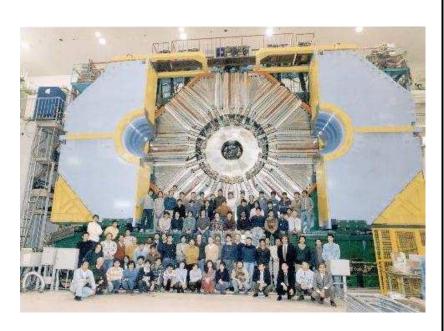
CP violation in B Meson \rightarrow A Brilliant Idea

□ All Fundamental Particles in Standard Model

(12 + 36 + 12 + Higgs) = 61 particles (excluding Graviton)

BABAR at Stanford Linear Accelerator Center (SLAC), California


□ Sister B-factory machine is at KEKB (Tsukuba) in Japan


BELLE Experiment in Japan

CP Violation in B Meson

BABAR and Belle directly measured CP violation in \boldsymbol{B} system

BABAR : e^+ (3.1 GeV) - e^- (9 GeV) Belle : e^+ (3.5 GeV) - e^- (8 GeV)

In 1999 BABAR and Belle had first colliding beam

In 2001 BABAR and Belle reported the first measurement of direct

CP violation in B meson \hookrightarrow fundamental matter-antimatter asymmetry

BABAR Collaboration

USA [34/256]

California Institute of Technology

UC, Irvine

UC, Los Angeles
UC, Riverside
UC, San Diego
UC, Santa Barbara
U of Tennessee
U of Texas at Austin
U of Texas at Dallas
U of Wisconsin

UC. Santa Cruz Yale

U of Cincinnati

U of Colorado Colorado State

Harvard U U of Iowa Iowa State U Johns Hopkins U

LBNL

U of Louisville U of Maryland

U of Massachusetts, Amherst

MIT

U of Mississippi SUNY, Albany U of Notre Dame Ohio State U U of Oregon Princeton U

SLAC U of South Carolina Stanford U The BABAR Collaboration

10 Countries 77 Institutions 522 Physicists

Canada [4/23]

University of British Columbia McGill University University de Montréal University of Victoria

France [5/40]

LAPP, Annecy LAL Orsay

LPNHE des Universités Paris VI et VII Ecole Polytechnique, Laboratoire Leprince-Ringuet CEA, DAPNIA, CE-Saclay

Germany [6/31]

Ruhr Universitaet Bochum Universitaet Dortmund Technische Univeritaet Dresden Universitaet Heidelberg Universitaet Rostock Universitaet Karlsruhe Italy

INFN, Bari INFN, Ferrara

Lab. Nazionali di Frascati dell' INFN

[12/90]

INFN, Genova & Univ INFN, Milano & Univ INFN, Napoli & Univ INFN, Padova & Univ INFN, Pisa & Univ & Sc

INFN, Pisa & Univ & Scuola Normale Superiore

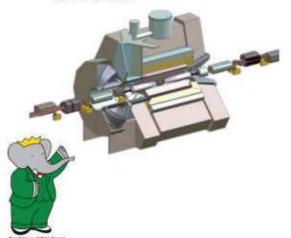
INFN, Perugia & Univ INFN, Roma & Univ "La Sapienza"

INFN, Torino & Univ INFN, Trieste & Univ

The Netherlands

[1/3] NIKHEF, Amsterdam

Norway [1/4] U of Bergen Russia [1/10]


Budker Institute, Novosibirsk

Spain [2/7]

IFAE-Barcelona IFIC-Valencia

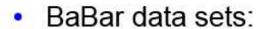
United Kingdom [11/58]

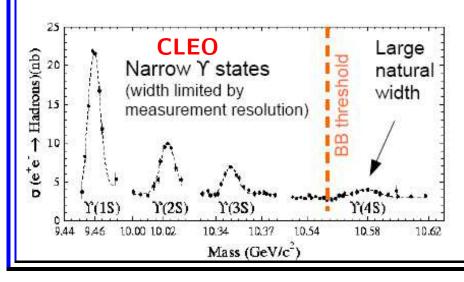
U of Birmingham
U of Bristol
Brunel U
U of Edinburgh
U of Liverpool
Imperial College
Queen Mary, U of London
U of London, Royal Holloway
U of Manchester
Rutherford Appleton Laboratory
U of Warwick

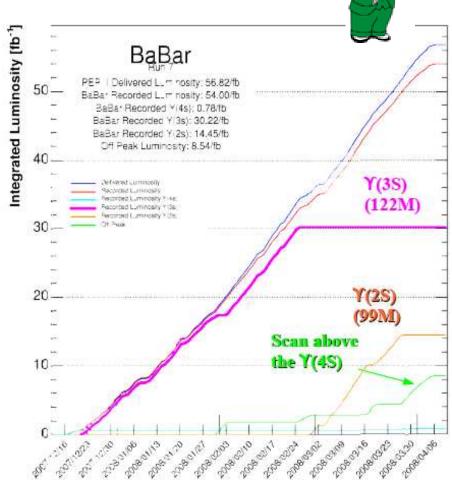
October 17, 2006

BABAR Collaboration

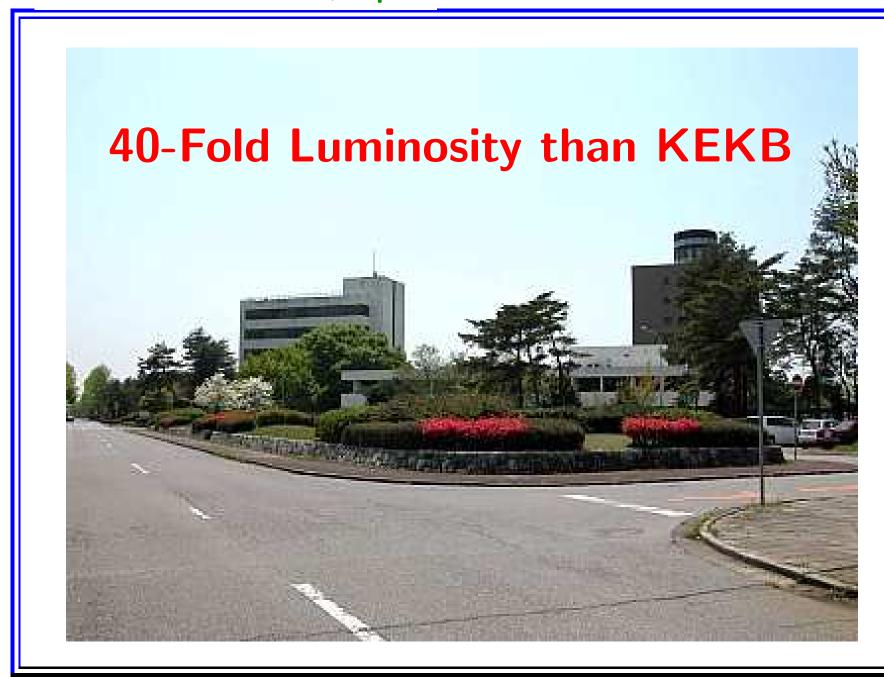
University of South Alabama: R. Godang

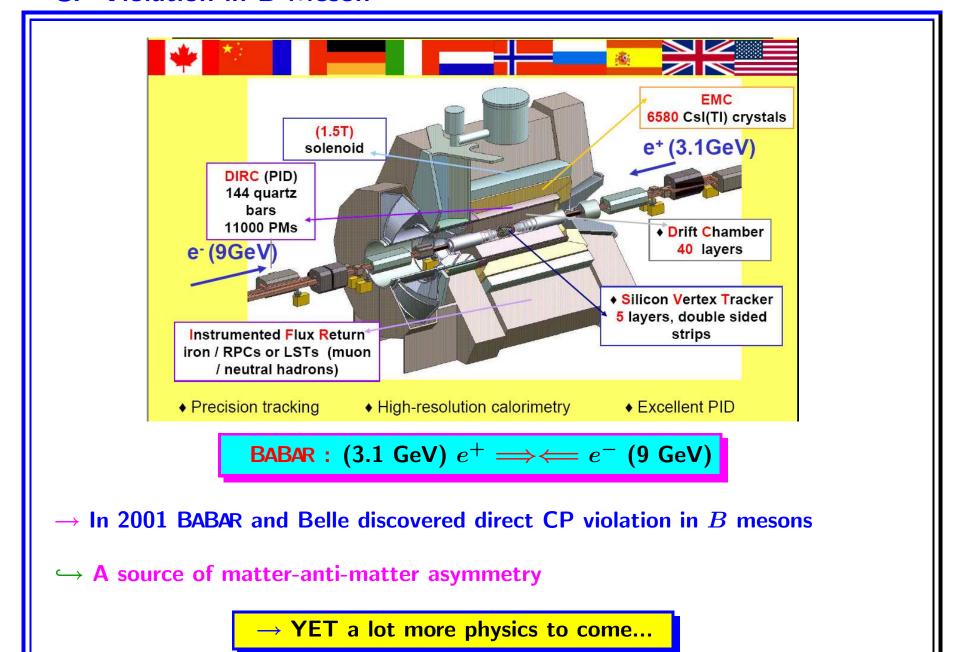

SLAC Control Room


SLAC Main Control Room

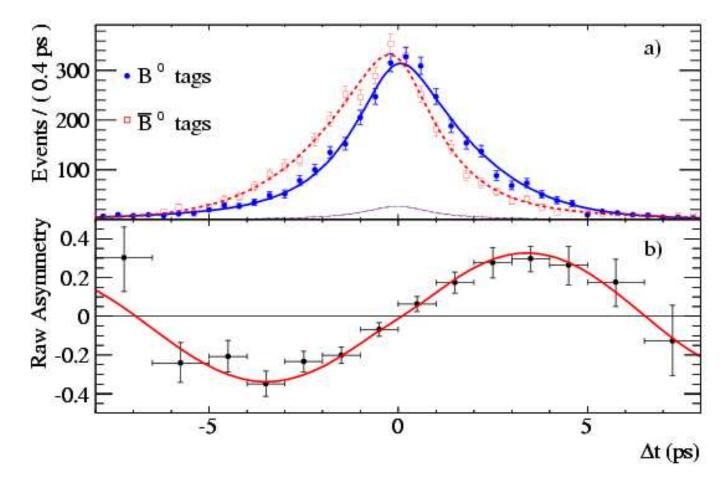

BABAR Data: $\Upsilon(nS)$

Final BABAR Data

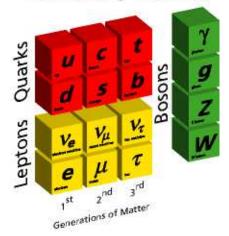

- 122 x 10⁶ Υ(3S) decays
- 99 x 10⁶ Υ(2S) decays
- "offpeak" samples of 1.4fb⁻¹ and 2.4fb⁻¹ collected ~30 MeV below the Υ(2S) and Υ(3S)
- 79 fb⁻¹ "continuum background" samples of Y(4S) with similar detector conditions



Trigger requirements modified for narrow Υ data taking



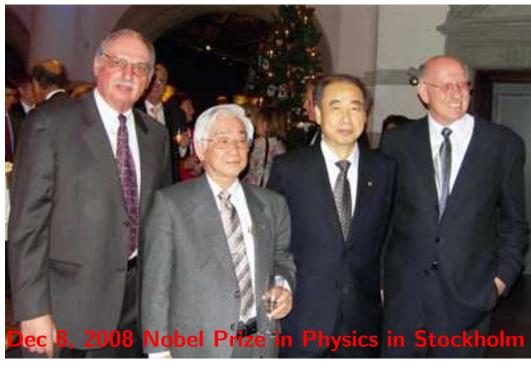
CP Violation in B Meson

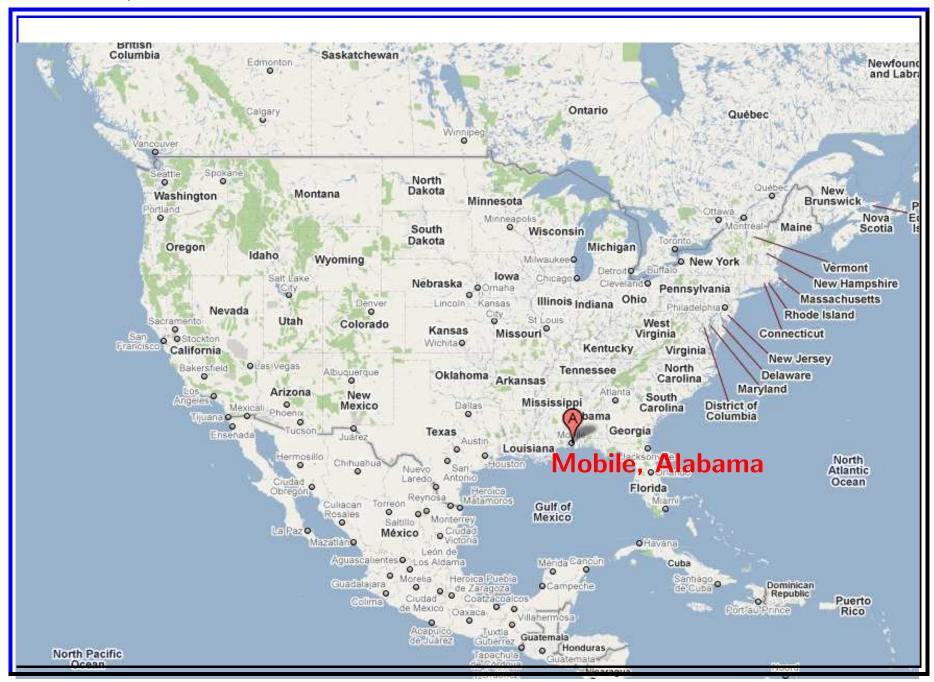


☐ This plot shows CP violation (3.2% asymmetry precision)

Matter and anti-matter is behaving differently (CP violation)

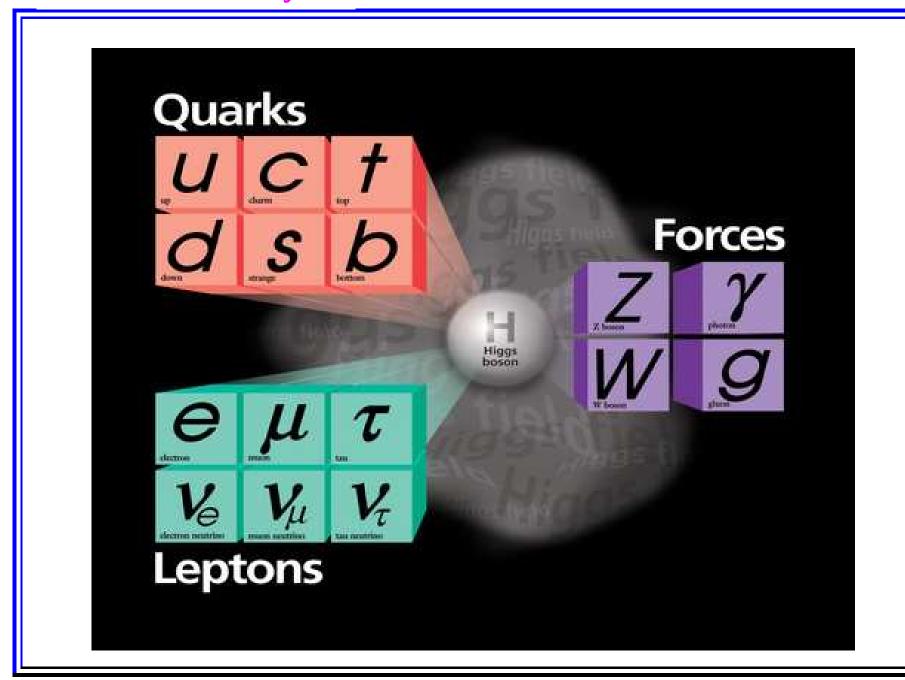
Nobel Price in Physics 2008


Elementary Particles



Mobile, Alabama USA

University of South Alabama

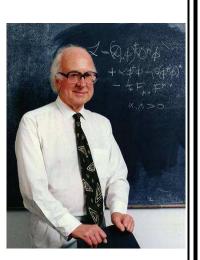


USA Undergraduate Students

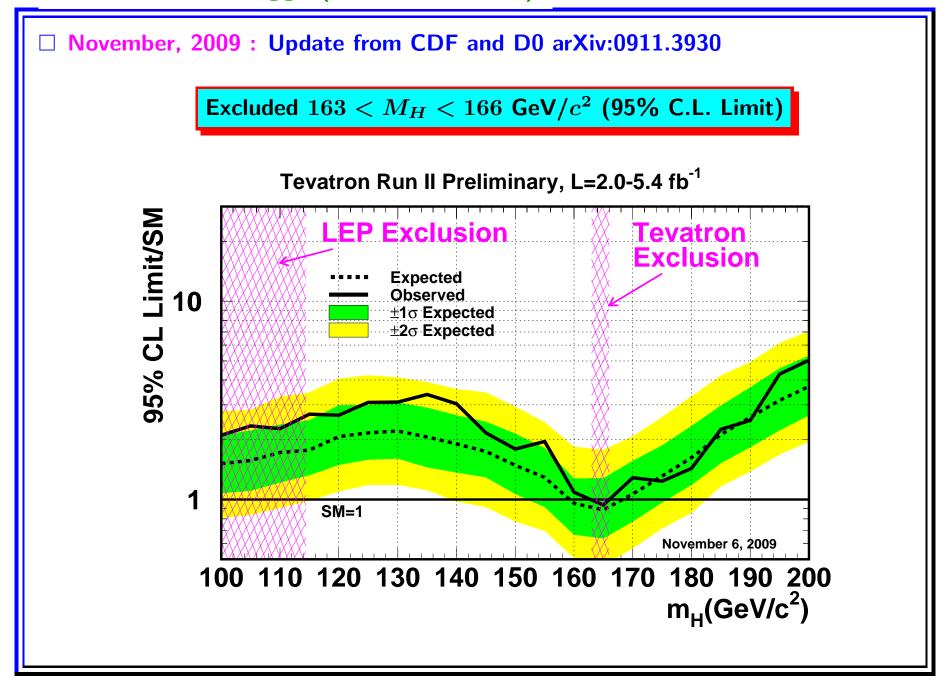
SESAPS Conference at LSU, 2010

Search for New Physics

Search for Higgs Bosons


How the elementary particles get their mass?

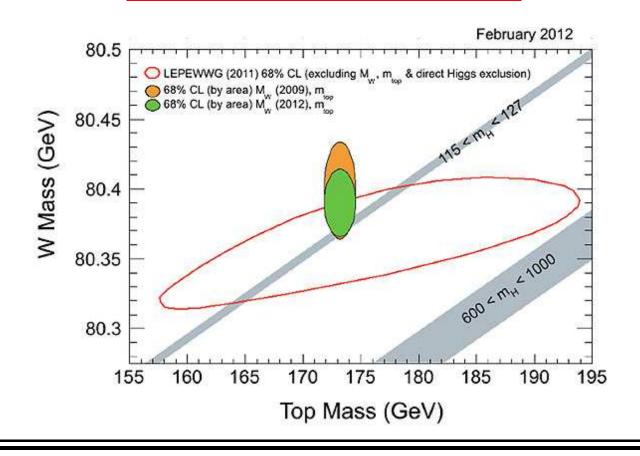
- □ Spontaneous symmetry-breaking: the Higgs generates mass by self-interaction
 - ★ It implies the existence new particle so called "Higgs boson"
- ☐ Higgs particle is named after Peter Higgs
- Leon Lederman (Nobel 1988) called it "God Particle"



 \square LEP $(e^+ - e^-)$ at CERN (2002) searched for the SM Higgs

 \hookrightarrow Yield a lower limit: $M_H > 114.4$ GeV (C.L. only)

Search for SM Higgs (CP-Even Scalar)

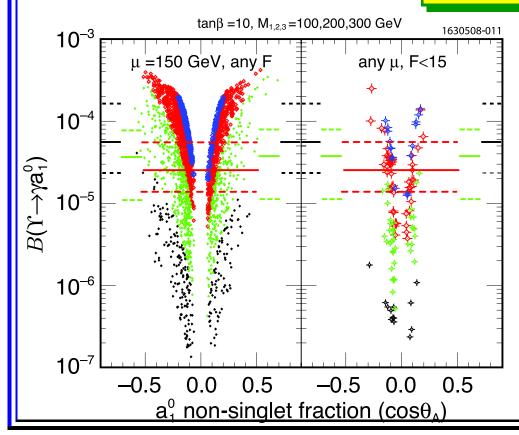


 \square February, 2012 : CDF measured the mass of W

 $M_W=80.347\pm0.019$ GeV/ c^2 (a precision of 0.02%)

□ CDF and LHC results:

Allowed $115 < M_H < 127 \; {
m GeV}/c^2$



- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 - → Light CP-Odd Pseudoscalar:

$$A^0 \equiv a_1^0 \equiv a_1 = cos \; heta_A \; a_{MSSM} + sin \; heta \; a_S$$

 \square For $m_{a_1} < 2m_b$, the lightest CP-even Higgs (h^0)

$$h^0
ightarrow a_1 a_1$$
 can avoid LEP limits

F = Electroweak Symmetry
Breaking (EWSB) fine tuning

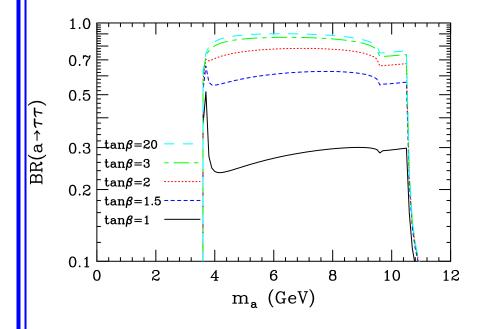
 $tan \ \beta = ratio \ of \ the \ vacuum$ expectation values

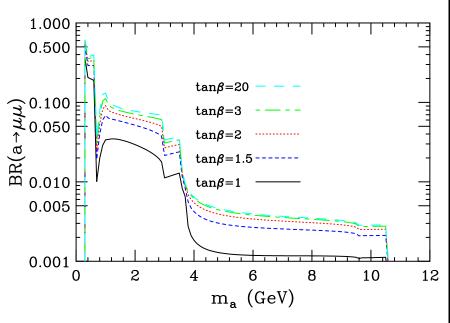
$$m_{a_1} < 2m_{ au}$$

$$2m_ au < m_{a_1} < 7.5~ ext{GeV}$$

$$7.5 \; {
m GeV} < m_{a_1} < 8.8 \; {
m GeV}$$

$$8.8~{
m GeV} < m_{a_1} < 9.2~{
m GeV}$$

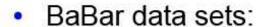

Prediction Higgs A^0 : PRD 81, 075003 (2010): Dermisek, Gunion


 \square At tree-level, $\mathcal{B}(a)$ apply equally to $\mathcal{B}(A^0)$

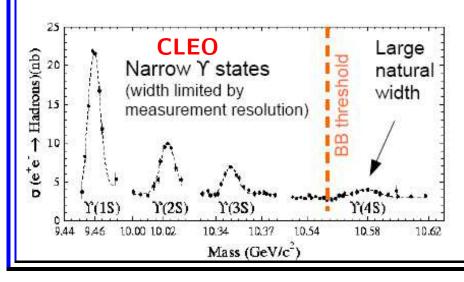
independent of $cos \,\, heta_A$ due to the absence of tree-level a

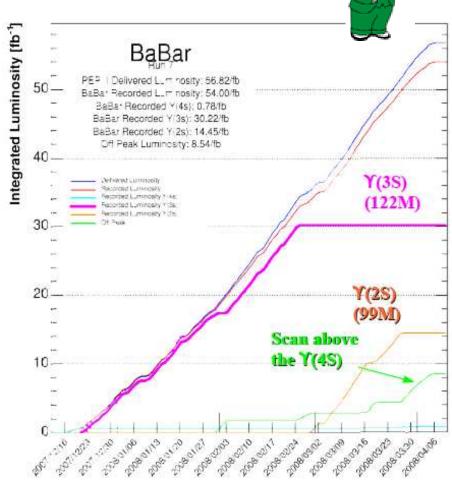
 \square $\mathcal{B}(a o au^+ au^-)$ and $\mathcal{B}(a o\mu^+\mu^-)$ as a function of tan eta

 $tan \beta = h_u/h_d$ = ratio of the vacuum expectation value



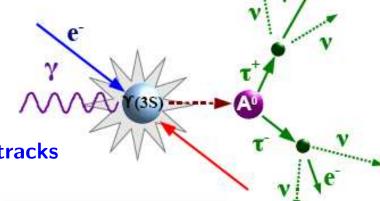
 \square At $tan \ eta > 2$, $\mathcal{B}(a o au^+ au^-)$ and $\mathcal{B}(a o \mu^+\mu^-)$


change very little with increasing $tan\ eta$ at any given m_a


BABAR Data: $\Upsilon(nS)$

Final BABAR Data

- 122 x 10⁶ Υ(3S) decays
- 99 x 10⁶ Υ(2S) decays
- "offpeak" samples of 1.4fb⁻¹ and 2.4fb⁻¹ collected ~30 MeV below the Υ(2S) and Υ(3S)
- 79 fb⁻¹ "continuum background" samples of Y(4S) with similar detector conditions



Trigger requirements modified for narrow Υ data taking

$$\Upsilon(3S)
ightarrow \gamma A^0$$
 , $A^0
ightarrow au^+ au^-$ BABAR

- \diamondsuit Search for $\Upsilon(3S) o \gamma A^0$, $A^0 o au^+ au^-$, PRL 103, 181801 (2009)
- ☐ The photon energy in the Center-of-Mass (CM) is given by

$$E_{\gamma}^*=rac{m_{\Upsilon}^2-m_{A^0}^2}{2m_{\Upsilon}}$$

- \square $E_{\gamma} > 100$ MeV, and exactly two charged tracks
- \square Both charged tracks are identified as leptons (e or μ)
- Backgrounds
 - $e^+e^- \rightarrow \gamma \tau^+\tau^-$ (mostly)
 - QED process including two photons i.e:

$$\triangleright e^+e^- \rightarrow e^+e^-e^+e^-$$

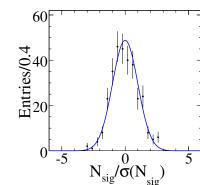
$$ightharpoonup e^+e^-
ightarrow e^+e^- \mu^+\mu^-$$

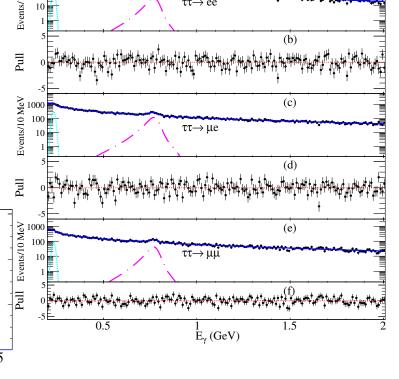
$$ullet e^+e^- o qar q$$
 $(q=u,d,s,c) o ext{small}$

 $\Upsilon(3S)
ightarrow \gamma A^0$, $A^0
ightarrow au^+ au^-$ PRL 103, 181801 (2009) BABAR

☐ The residual background is exploited by 8 kinematic and angular variables

□ Peaking contributions

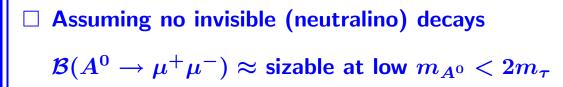

- Total uncertainty


 $m_{\Lambda^0} (GeV/c^2)$

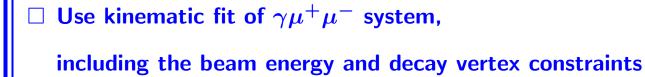
ullet $\Upsilon(3S)
ightarrow \gamma \; \chi_{bJ}(2P)(J=0,1,2)$

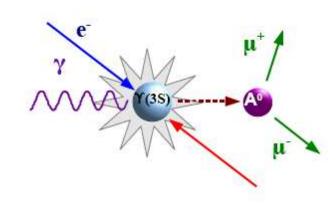
$$\hookrightarrow \chi_{bJ}(2P)
ightarrow \gamma \varUpsilon(nS) (n=1,2)$$

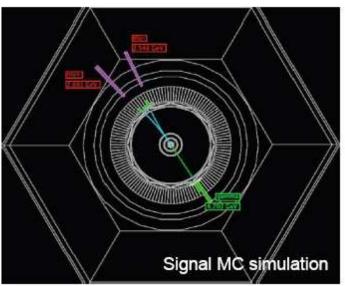
$$\hookrightarrow \Upsilon(nS) o au^+ au^-$$

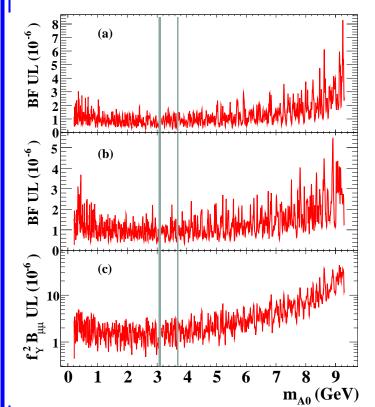

 \square Search A^0 in E_{γ} spectrum at $4.03 < m_{A^0} < 10.10$ GeV $/c^2$

$$\mathcal{B}(\varUpsilon(3S) o\gamma A^0) imes\mathcal{B}(A^0 o au^+ au^-)<(1.5-16) imes10^{-5}$$
 90% C.L.


$$\mathcal{B}(\eta_b o au^+ au^-) < 9\%$$
 at 90% C.L.


 \square Search for A^0 scalar boson in the radiative decays of $\Upsilon(2S)$ and $\Upsilon(3S)$




- $\hfill\Box$ Require 2 oppositely charged tracks and one γ at least one of which is identified as a muon
- \square $E_{\gamma} > 200$ MeV (COM), while allowing additional γ with energy lower than 200 MeV

 \square Search for A^0 as a function of mass m_{A^0}

Scan range $0.212 < m_{A^0} < 9.3$ GeV

(a)
$$\mathcal{B}(\Upsilon(2S) o \gamma A^0) imes \mathcal{B}_{\mu\mu}$$

(b)
$$\mathcal{B}(\varUpsilon(3S) o \gamma A^0) imes \mathcal{B}_{\mu\mu}$$

(c)
$$f_{\Upsilon}^2 imes \mathcal{B}_{\mu\mu}$$

 $\mathcal{B}(\varUpsilon(nS) o \gamma A^0)$ are related to the effective

Yukawa coupling f_{Υ} of bound b quark to A^0

$$\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to \ell^+\ell^-)} = \frac{f_{\Upsilon}^2}{2\pi\alpha} (1 - \frac{m_{A^0}^2}{m_{\Upsilon(nS)}^2})$$

- \Box Shaded area is excluded from the search around the J/ψ and $\psi(2S)$ resonances
- \square No signal observed at $m_{A^0} \sim 214$ MeV

Significant positive fluctuation of $\Upsilon(3S) \sim 2.8\sigma$ and $\Upsilon(2S) \sim 3.1\sigma$

 $\mathcal{B}(\eta_b o \mu^+\mu^-) < 0.9\%$ at 90% C.L.

☐ In SM, quark can change flavor by weak interactions:

$$\left(egin{array}{c} d' \ s' \ b' \end{array}
ight) = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

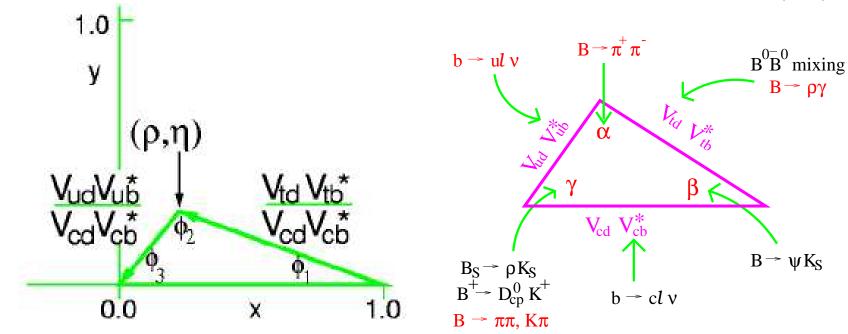
Cabibbo-Kobayashi-Maskawa (CKM) matrix

[Weak eigenstates] = $[V_{CKM}]$ [quark mass eigenstates]

The CKM matrix contains complex numbers

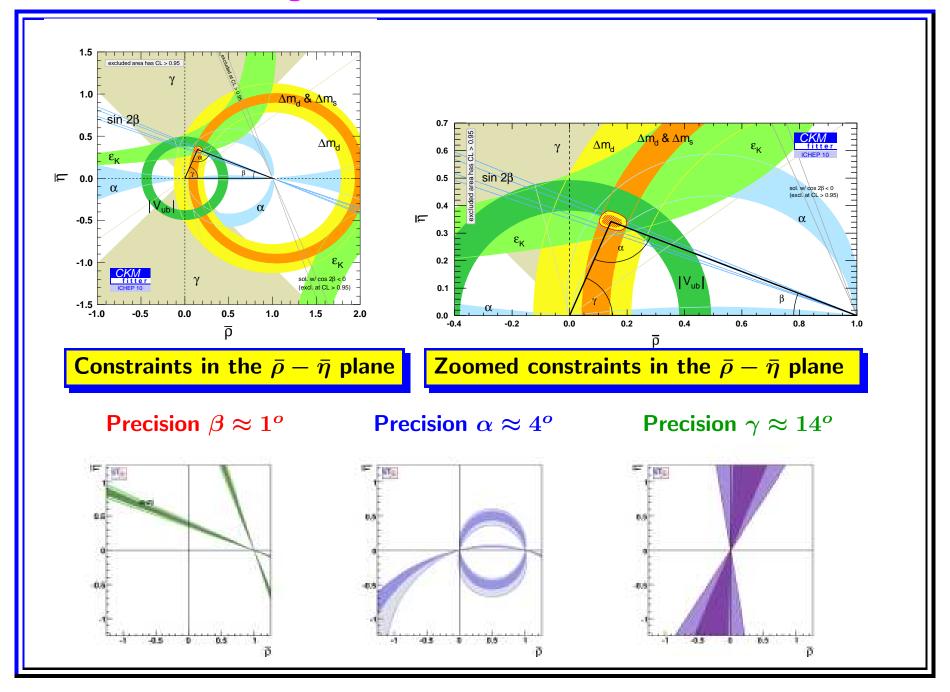
Wolfenstein's CKM matrix form:

$$V_{CKM} = \left(egin{array}{ccc} 1 - rac{1}{2}\lambda^2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{array}
ight)$$

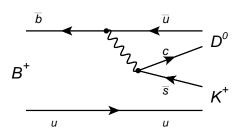

- $\lambda \sim 0.22$ (expansion parameter)
- A, ρ , and η can be measured in B decays

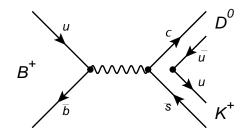
Unitarity Triangle (UT)

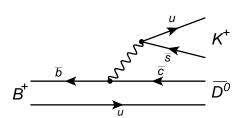
☐ By applying the Unitarity condition (scalar product of any two rows or columns):

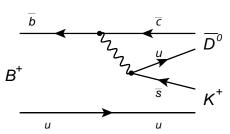

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

 \square CKM matrix can be presented in the complex plane \rightarrow Unitarity Triangle (UT)


- It is very important to measure the CKM angles and its sides!
- We need to measure them precisely in order to search for New Physics
 - → Deviation from the Standard Model will signal New Physics!


Status of UT Triangle


Measuring Angle γ


 \square Interference between $b
ightarrow c ar{u} s$ and $b
ightarrow u ar{c} s$ tree amplitudes

b o c ar u s transition: $B^+ o D^0 K^+$

 $b \to u \bar c s$ transition: $B^+ \to \bar D^0 K^+$

- □ GLW: Cabibbo-suppressed $D \to \text{CP-eigenstates } (K^+K^-, \pi^+\pi^-)$ Gronau, London, Wyler: PLB 253, 1991 & PLB 265, 1991
- \square ADS: $D \to \mathsf{Cabibbo} ext{-favored}$ and doubly-Cabibbo-suppressed $(K^\pm\pi^\mp)$ Atwood, Dunietz, Soni: PRL 78, 3257, 1997
- □ GGSZ: Cabibbo-favored $D \to \text{self-conjugate } (K_s^0 \pi^+ \pi^-, K_s^0 K^+ K^-)$ Giri, Grossman, Soffer, Zupan: PRD 68 054018, 2003 $\to \text{time limited}$

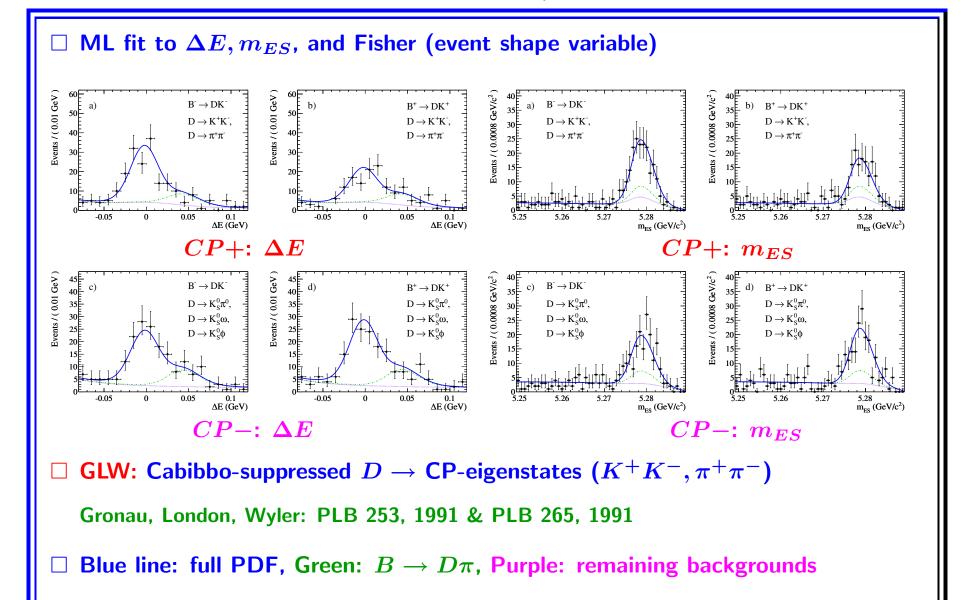
GLW on $B^\pm o DK^\pm$ PLB 253, 1991 & PLB 265, 1991

\square In GLW method the D^0 mesons are reconstructed:

- $CP+:D^0\to K^+K^-,\pi^+\pi^ \rightarrow D_{CP\pm} = \mathsf{CP}$ eigenstates of D system
- ullet $CP-:D^0
 ightarrow K^0_s\pi^0, K^0_s\omega, K^0_s\phi$
- Two direct CP-violating partial decay rate asymmetries:

$$A_{CP\pm} \equiv rac{\Gamma(B^- o D_{CP\pm}K^-) - \Gamma(B^+ o D_{CP\pm}K^+)}{\Gamma(B^- o D_{CP\pm}K^-) + \Gamma(B^+ o D_{CP\pm}K^+)}
ightarrow \Gamma = ext{partial decay width}$$

Two ratios of charged averaged partial rates:

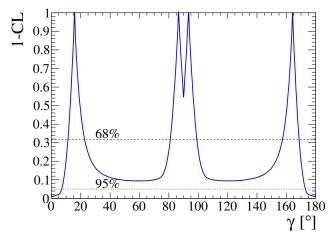

$$R_{CP\pm} \equiv 2rac{\Gamma(B^- o D_{CP\pm} K^-) \, + \, \Gamma(B^+ o D_{CP\pm} K^+)}{\Gamma(B^- o D^0 K^-) \, + \, \Gamma(B^+ o ar{D^0} K^+)}$$

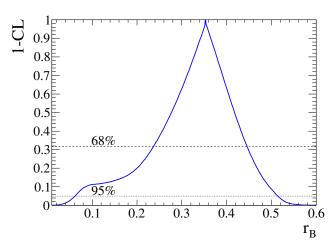
Then γ can be extracted from the other two unknowns variables δ_B and r_B :

$$R_{CP\pm}=1+r_{B}^{2}\pm2r_{B}cos\delta_{B}cos\gamma$$
 $A_{CP\pm}=rac{\pm2r_{B}sin\delta_{B}sin\gamma}{1+r_{B}^{2}\pm2r_{B}cos\delta_{B}cos\gamma}$

- \square δ_B = the difference of their strong phases
- \Box r_B = the magnitude of the ratio of the amplitudes for each decay

$$r_B \equiv rac{|A(B^-
ightarrow ar{D^0}K^-)|}{|A(B^-
ightarrow D^0K^-)|}$$


 \square $B \rightarrow DK$ contribution: the region between blue and green


 \Box Using BABAR Data: 425 fb^{-1} (467 M $B\overline{B}$)

$$A_{CP+} = 0.25 \pm 0.06 \pm 0.02$$
 $A_{CP-} = -0.09 \pm 0.07 \pm 0.02$

$$R_{CP+} = 1.18 \pm 0.09 \pm 0.05$$
 $R_{CP-} = 1.07 \pm 0.08 \pm 0.04$

 \square Direct CP-Violation on $B^\pm o DK^\pm\colon A_{CP}+$ at 3.6σ from zero

 \square At 68% CL: angle γ mod 180^o belongs to one of the three intervals:

$$(11.3, 22.7^{o}), (80.8^{o}, 99.2^{o}), (157^{o}, 168.7^{o})$$

 \square At 68% CL: $0.24 < r_B < 0.45$

ADS on $B^{\pm} \rightarrow DK^{\pm}$ Theory: PRL 78, 3257, 1997

- ☐ In ADS method (D. Atwood, I Dunietz, A Soni)
 - $B^+ o ar{D^0}K^+ o ar{D^0} o K^-\pi^+$ [doubly-Cabbibo-suppressed] (interferes with \Leftrightarrow)
 - $B^+ o D^0 K^+ o D^0 o K^- \pi^+$ [Cabbibo-favored]
 - ⇒ Opposite-sign (OS) because two kaons have opposite charges
- □ Define same-sign (SS) events:
 - ullet $B^+
 ightarrow ar{D^0} K^+
 ightarrow ar{D^0}
 ightarrow K^+ \pi^-$ [Cabbibo-favored]
- \square BABAR published 2 results where D^0 are reconstructed:
 - $D^0 o K^+\pi^-$; Data: $467 imes 10^6 \ B\overline{B} o {\sf PRD}$ 82 072006, 2010
 - ullet $D^0
 ightarrow K^+\pi^-\pi^0$; Data: $474 imes 10^6~B\overline{B}
 ightarrow ext{PRD 84 012002, 2011}$

ADS on $B^\pm o DK^\pm$ Continue...

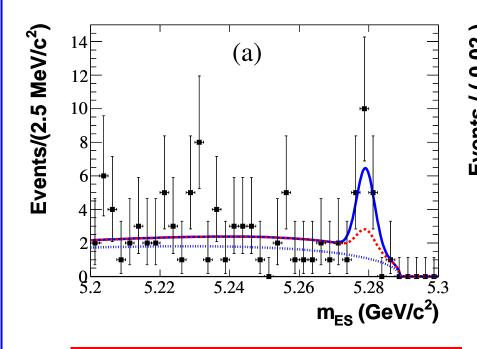
☐ Extract new set of variables:

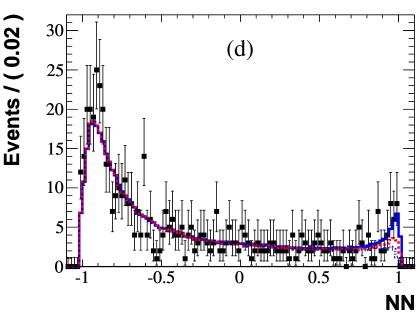
$$ullet$$
 $R^+=rac{\Gamma(B^+ o[K^-\pi^+]K^+)}{\Gamma(B^+ o[K^+\pi^-]K^+)}\equivrac{opposite\ sign\ yield}{same\ sign\ yield}$ from B^+

$$ullet$$
 $R^-=rac{\Gamma(B^-
ightarrow [K^+\pi^-]K^-)}{\Gamma(B^-
ightarrow [K^-\pi^+]K^-)}\equiv rac{opposite\ sign\ yield}{same\ sign\ yield}$ from B^-

 \square Neglecting D-mixing effects the ratios R^+ and R^- can be written as

$$R^+ = r_B^2 + r_D^2 + 2r_Br_Dk_D\,\cos(\gamma + \delta_B + \delta_D)$$


$$R^- = r_B^2 + r_D^2 + 2r_B r_D k_D \cos(\gamma - \delta_B + \delta_D)$$

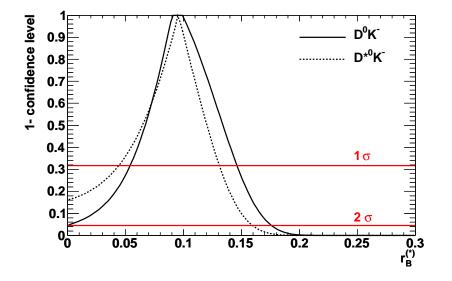

where

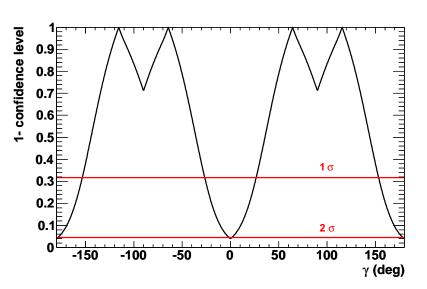
•
$$r_B \equiv \frac{|A(B^+ \to D^0 K^+)|}{|A(B^+ \to \bar{D^0} K^+)||} = 0.106 \pm 0.016$$
 $r_D^2 = \frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} = (2.2 \pm 0.1) \times 10^{-3}$

- ullet δ_B and $\delta_D=(47^{+14}_{-17})^o$ are CP conserving strong phase
- ullet γ is CP violating weak phase
- k_D is the coherence factor between 0 to 1: $k_D = 0.84 \pm 0.07$
- k_D and δ_D were measured from CLEOc

 \square Simultaneous fit to m_{ES} and NN (event shape and tagging variables)

 m_{ES} : opposite-sign $B^+ o D^0 K^+$

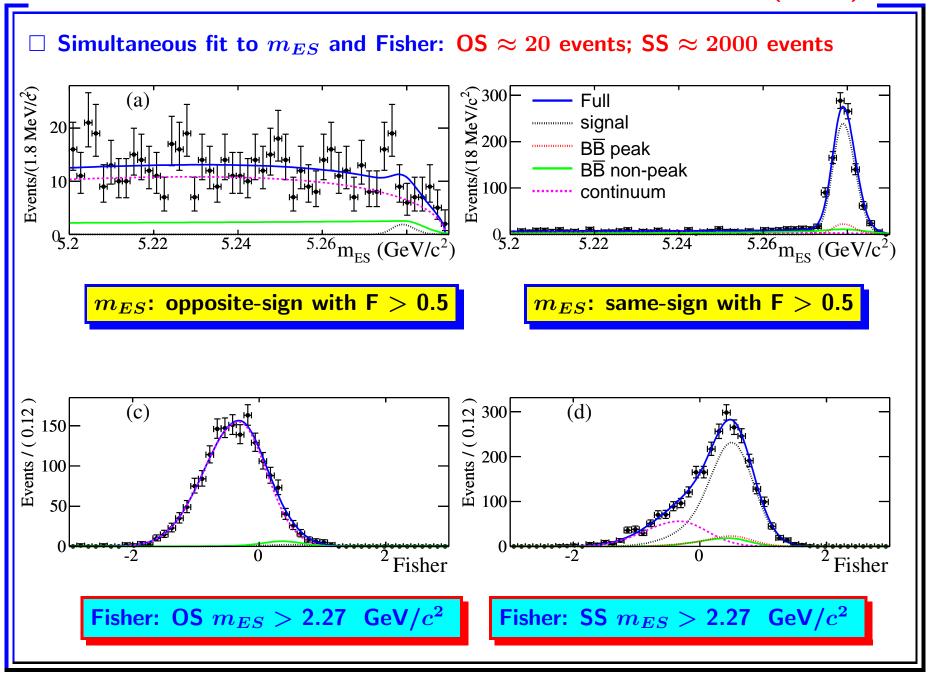

NN: opposite-sign $B^+ o D^0 K^+$


- \square Solid-blue: Full PDF, Red: sum of all bkgs, Dotted-blue: $q\overline{q}$ background
- \square ADS $B^{\pm} \rightarrow DK^{\pm}$ results:

$$R^+ = (2.2 \pm 0.9 \pm 0.3) \times 10^{-2}$$
 $R^- = (0.2 \pm 0.6 \pm 0.2) \times 10^{-2}$

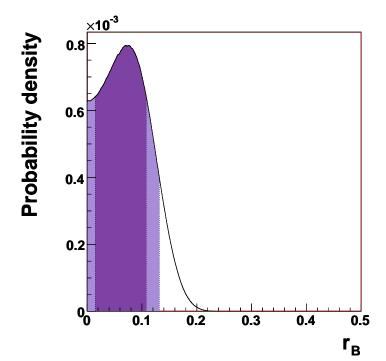
ADS BABAR Results Continue...

 \Box This measurement allowed us to extract variables: r_B and γ


Constraints on $r_B^{(*)}\colon B^- \to D^{(*)}K^-$

C.L. curve as a function of γ

- \square For γ result: combining B o DK and D^*K
- \Box The variables $r_B^{(*)}$ can be extracted:


$$r_B = (9.5^{+5.1}_{-4.1})\%$$
 $r_B^* = (9.6^{+3.5}_{-5.1})\%$

ADS Results on $D^0 o K^+\pi^-\pi^0$ PRD 84 012002, 2011 (NEW)

ADS Results on $D^0 o K^+\pi^-\pi^0$ PRD 84 012002, 2011 (NEW)

\square ADS results on r_B :

Bayesian probability density function for r_B

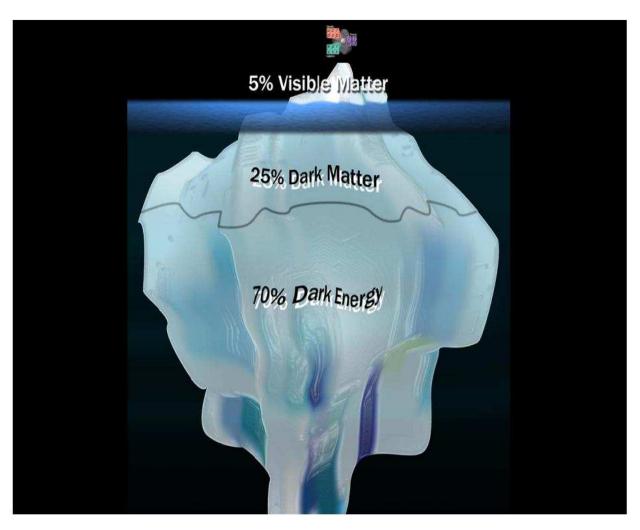
Dark: $0.01 < r_B < 0.11$ at 68% probability

Light: $r_B < 0.13$ at 90% probability

ightarrow Subject to small r_B , this measurement

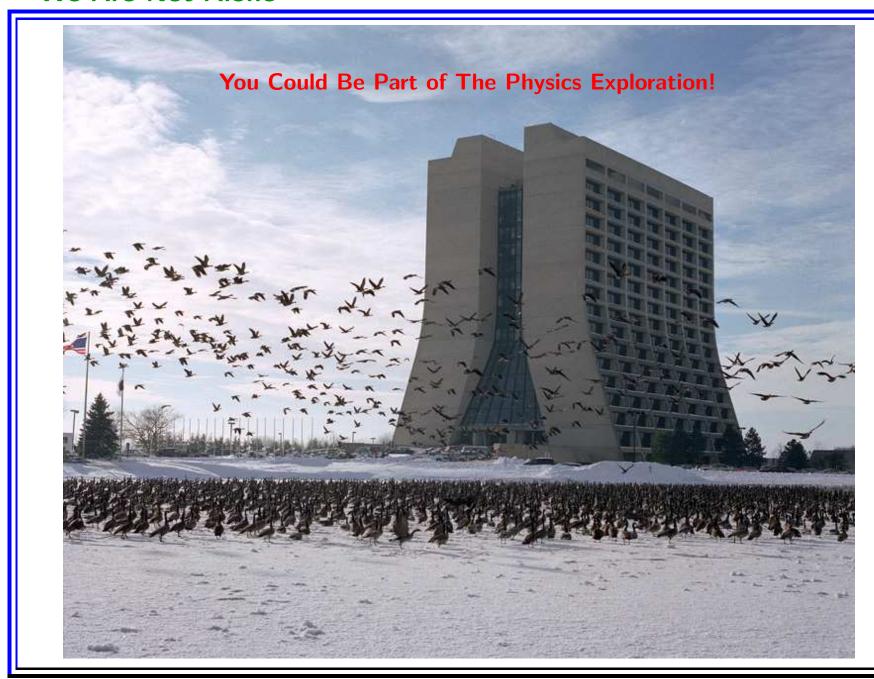
has less precision for γ result

 \square New results on R^+ and R^- (statistical limited):


$$R^+ = (5^{+12+1}_{-10-4}) \times 10^{-3}$$
 $R^- = (12^{+12+2}_{-10-4}) \times 10^{-3}$

☐ At 90% probability limit:

 $R^+ < 23 \times 10^{-3}$ $R^- < 29 \times 10^{-3}$


Current Understanding of Our Universe

SUMMARY: Where Are We Now?

★ A lot of things need to be discovered

We Are Not Alone

