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● Introduction and motivation for this oscillation search 

● Overview of the MiniBooNE design and analysis strategy

● The oscillation analysis

● The oscillation results

● Future outlook

● Summary
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● ν oscillations first postulated by Pontecorvo in 1957, based on analogy to kaons.

● Non-zero mass means mass eigenstates ≠ flavor eigenstates:

Neutrino OscillationsI
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● ν oscillations first postulated by Pontecorvo in 1957, based on analogy to kaons.

● Non-zero mass means mass eigenstates ≠ flavor eigenstates:

● Different  masses allow for changes in lepton flavor composition as  propagates:

Neutrino OscillationsI
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e




=Ue1 Ue2 Ue3

U1 U2 U3

U1 U2 U3
1

2

3
 mass states

flavor states participating in 
standard weak interactions 
with charged lepton partners

mixing matrix 
describing mass state 
content of flavor states

● Uxy                          : elements of mixing matrix

● mij
2 ≡ mi

2 – mj
2     : mass squared splitting between states

● L                            : the travel path-length of the neutrino

● E                            : the energy of the neutrino
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● ν oscillations first postulated by Pontecorvo in 1957, based on analogy to kaons.

● Non-zero mass means mass eigenstates ≠ flavor eigenstates:
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


= cosij sin ij

−sin ij cos iji

 j


P =sin22ijsin2 1.27mij
2 L
E 

determines amplitude for 
oscillation ~ probability

determines shape of 
oscillation probability 
as function of E (or L)

P()

P()

Simplified case of direct 2 neutrino oscillations

mij
2≡mi

2−mj
2
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Neutrino OscillationsI

n

t

r

o

d

u

c

t

i

o

n Only experimental evidence for physics beyond the Standard Model !!!

● First experimental evidence was seen in 1968 by R. Davis in the detection of solar neutrinos
observed ~1/3 as many e from the sun as expected

disappearance e → x

m2 ~ 7x10-5  eV2

later confirmed by SNO (solar), Super-K (solar) and KamLAND (reactor)

● Then a different mixing was seen in neutrinos from the atmosphere
observed ~1/2 as many upward going  as downward going

disappearance  → x

m2 ~ 2x10-3  eV2

later confirmed by MINOS (accelerator) and K2K (accelerator) 

● A third mixing was seen by the LSND experiment at Los Alamos
observed a small excess off e in a  beam

appearance  → e

m2 ~ 100  eV2

later experiments reduced allowed regions, but never confirmed
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● Many experiments

● Resulting in an extremely crowded neutrino 
oscillation landscape!!

● This wild compilation of allowed regions and 
limits can, fortunately, be summed up pretty 
concisely by the observation of three unique    
m2 regions:
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Neutrino Oscillations

∆m2
atm~2.4x10 –3 eV 2

∆m2
solar~8x10 –5 eV 2

∆m2
LSND~0.1-1 eV 2
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~maximal mixing (>80%)

best fit mixing 
is tiny (~0.26%)
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Neutrino Oscillations

νe        νµ ντ

ν3

ν2

ν1

● Width of the Z implies 2.994 +- 0.012 light 
neutrino flavors

● And two independent mass splittings fit very 
nicely into this picture
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Neutrino Oscillations
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● Width of the Z implies 2.994 +- 0.012 light 
neutrino flavors

● And two independent mass splittings fit very 
nicely into this picture
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● But what to do with a third, independent 
neutrino mass splitting?
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Neutrino Oscillations

νe        νµ ντ

ν3

ν2

ν1

● 'Simplest' explanation is a 4th (or more)     
neutrino that is mostly “sterile” (non-
interacting)

ν4νs
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Neutrino Oscillations

νe        νµ ντ

ν3

ν2

ν1

● 'Simplest' explanation is a 4th (or more)      
neutrino that is mostly “sterile” (non-
interacting)

● Other exotic, beyond the SM solutions as    
well, for example:

➔ Sterile neutrinos hep-ph/0305255

➔ Neutrino decay hep-ph/0602083

➔ Lorentz/CPT violation hep-ex/0506067

➔ Extra dimensions hep-ph/0504096

ν4νs

● But these interpretations are not the subject 
of this presentation 

● First, the large m2 oscillation must 
be confirmed. . .
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The LSND Signal as Oscillations
➢ LSND looked for an excess of e in a  beam

➢ Found an 87.9 ± 22.4 ± 6.0 (3.8σ)              
e event excess above background 

+ +

e+e   ⇒  e

?

epe+n

np d2.2MeV

Signal:

Beam:

➢ If interpreted as 2 flavor oscillations, implies 
an oscillation probability of

         (0.264 +- 0.067 +- 0.045)%



Kyoto University Seminar, Kyoto, Japan – October 9, 2007D. Schmitz – Columbia University, NY, NY 16

M
o

t

i

v

a

t

i

o

n

The LSND Signal as Oscillations
➢ LSND looked for an excess of e in a  beam

➢ Found an 87.9 ± 22.4 ± 6.0 (3.8σ)              
e event excess above background 

+ +

e+e   ⇒  e

?
Beam:

➢ If interpreted as 2 flavor oscillations, implies 
an oscillation probability of

         (0.264 +- 0.067 +- 0.045)%
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Overview of the MiniBooNE 
design and analysis strategy
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MiniBooNE Design
● If the LSND excess is due to oscillations, then the effect should be preserved for a fixed 

ratio of baseline length, L and neutrino energy, E

P =sin22sin21.27m2 L
E 

<L>
<E>

≈0.5−1.0

<E> ~ 0.5-1.0 GeV

<L> ~ 0.540 km 

Decay region

Drawing not to scale

Primary Beam Secondary Beam Neutrino Beam

π+,K+



50m ~500m

● 8 GeV protons from Fermilab Booster focused on to a 1.7 beryllium target
● 174 kA focusing horn
● 5.58E20 p.o.t. in neutrino mode
● changed to anti-neutrino mode in Jan, 2006

●  and K decay to produce neutrinos with mean energy ~0.7 GeV

● 800T pure mineral oil detector
● 1280 8” photomultiplier tubes
● 240 optically isolated tubes in a veto region
● detect Cherenkov and scintillation light produced in neutrino interactions

Beam composition and detection scheme completely different 
from LSND, but sensitive to the same oscillation space because of L/E
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MiniBooNE Analysis

near

far

here you see the 
unoscillated  flux

here you see the 
oscillated  flux

functionally identical detectors

long baseline, two detector disappearance experiment

short baseline, one detector appearance experiment

here you see a  flux
that is only 0.25% oscillated
effectively unoscillated 

here you also see the 
oscillated  flux 

appearing as e 

Unoscillated

Oscillated

Monte Carlo

  νμ spectrum

plot shamelessly stolen from MINOS collaboration
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    MiniBooNE will look for an excess of e events (~0.25% of ) above the 

predicted e background (~0.6% of ) and  mis-identifications
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MiniBooNE Tank Events
● After cuts, MiniBooNE must be able to find Ο(100s) e 

CCQE interactions in a sea of Ο(100Ks)  interactions
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● the three most important types of particles in the    
   tank are electrons, muons and 0
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MiniBooNE Tank Events
● After cuts, MiniBooNE must be able to find Ο(100s) e 

CCQE interactions in a sea of Ο(100Ks)  interactions
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● electrons:
➔ electrons create fuzzy rings due to multiple scattering

➔ several hundred CCQE events from intrinsic e produced in 
the beamline from muon and kaon decays are expected

➔ these intrinsics are irriducible at the event level

➔ energy spectrum of intrinsics differs from oscillation signal

e 

ell

llQE

PEM

mME
E

θν cos

2

2

1 2

+−
−=

12C

e

en pe-
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MiniBooNE Tank Events
● After cuts, MiniBooNE must be able to find Ο(100s) e 

CCQE interactions in a sea of Ο(100Ks)  interactions
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● muons:
➔ muons create sharp, filled-in rings

➔ event classification algorithms must reject >99%  CCQE 
events

➔ most CCQE can be removed by 2nd sub-event (more later)

➔ where muon is captured or electron not seen can use topology

 

ell

llQE

PEM

mME
E

θν cos

2

2

1 2

+−
−=

12C



n p-
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MiniBooNE Tank Events
● After cuts, MiniBooNE must be able to find Ο(100s) e 

CCQE interactions in a sea of Ο(100Ks)  interactions
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● neutral pions:
➔ 0s create two fuzzy, electron-like rings

➔ most 0 can be removed by two ring fit


12C



C C0  




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● neutral pions:
➔ 0s create two fuzzy, electron-like rings

➔ most 0 can be removed by two ring fit

➔ background comes from asymmetric decays where 
reconstruction cannot resolve both rings (kinematics)


12C



C C0  







Kyoto University Seminar, Kyoto, Japan – October 9, 2007D. Schmitz – Columbia University, NY, NY 25

The Oscillation Analysis



Kyoto University Seminar, Kyoto, Japan – October 9, 2007D. Schmitz – Columbia University, NY, NY 26

A Note on Blindness

● The MiniBooNE signal is small but relatively          
easy to isolate

● As data is collected it is classified into 'boxes'

● For boxes to be opened to analysis they must be 
shown to have a signal < 1

● In the end, 99% of the data were available prior 
to unblinding...necessary to understand errors

● All systematics, PID selections and fitting procedures 
had to be finalized before opening (literally just 
“push the button”)

CCQE
NC

High E

en
er

gy

sub-events

possible 
signal region
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Oscillation Analysis
O
s
c

A
n
a
l
y
s
i
s

neutrino 
cross-section 

model

neutrino 
flux prediction

detector
response model

track based
reconstruction

point source
reconstruction

Likelihood PID Boosting PID

normalize to
, fit e

simultaneous
fit to ande

● GEANT4 simulation of Booster neutrino beam line      
    

● NUANCE neutrino interaction code tuned to MB data

● GEANT3 simulation with an added “optical model” 

● Two event reconstruction packages 

● Two algorithms for event classification 

●  Two approaches to apply the e ratio constraint       

   and fit for oscillation signal 
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Oscillation Analysis
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neutrino 
cross-section 

model

neutrino 
flux prediction

detector
response model

track based
reconstruction

point source
reconstruction

Likelihood PID Boosting PID

normalize to
, fit e

simultaneous
fit to ande

π+,K+

p (8 GeV)

π−,K-

beryllium target

miniboone horn
rendering

Bartoszek Engineering


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Neutrino Flux Prediction

kinematic boundary 
of HARP measurement 
at exactly 8.9 GeV/c

● black boxes are the distribution of + 
which decay to a  that passes 
through the MiniBooNE detector

pBe   +  

O
s
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i
s

M.G. Catanesi et al “Measurement of the production cross-section of positive pions in the 
collision of 8.9 GeV/c protons on beryllium.”  Euro. Phys. J C 52:29-53 (2007)

● Hadron production measurements from the HARP and       
  E910 experiments constrain + and  production which     
  yield muon neutrino fluxes
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Neutrino Flux Prediction

● intrinsic electron neutrinos come from    
kaon decays or the decay of muons      
coming from pions

● K+ data from 10 – 24 GeV/c proton           
beams

● plots show data scaled to 8.9 GeV/c         
beam momentum with                             
parameterization and 1 excursions

● K0 also parameterized, but present a       
much smaller background than K+

pBe   K+  /e

O
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s
i
s



Kyoto University Seminar, Kyoto, Japan – October 9, 2007D. Schmitz – Columbia University, NY, NY 31

Neutrino Flux Prediction

~93%

~6%

~0.6%

<0.1%








e


e

    Intrinsic e + e sources:

 + → e+   e     (52%)    

 K+  →  e+  e    (29%)
 K0 →  e e         (14%)   
Other              (  5%)

largest source of intrinsic e are 

tied directly to  event rate 

through + production in target

{






e
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s
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i
s
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Neutrino Cross­section Model
● armed with an input flux, neutrino interactions are                
  simulated using the NUANCE neutrino event generator         
  software

● exclusive channels are handled separately and use differing, 
   appropriate models 

● the most important exclusive channel for the MiniBooNE       
   oscillation search is the charged-current quasi-elastic      
   interaction

● NUANCE models CCQE events using the relativistic Fermi      
   gas model of Smith and Moniz as a framework

● the next most critical exclusive channels are the neutral       
   current production of 0's

● NUANCE uses the resonant and coherent 0 production         
   models of Rein and Sehgal

O
s
c

A
n
a
l
y
s
i
s ➔ D. Casper, “The nuance Neutrino Physics Simulation, and the Future”,  Proceedings 

of NUINT01 workshop (2001) 
➔ R.A. Smith, E.J Moniz, “Neutrino Reactions on Nuclear Targets” Nucl.Phys.B43:605 
(1972) Erratum-ibid.B101:547 (1975)
➔ D. Rein, L.M. Sehgal, “Coherent pi0 production in neutrino reactions” 
Nucl.Phys.B223:29 (1983)
➔ D. Rein, L.M. Sehgal, "Neutrino Excitation Of Baryon Resonances And Single Pion 
Production” Annals.Phys.1333:79 (1980)

neutrino 
cross-section 

model

neutrino 
flux prediction

detector
response model

track based
reconstruction

point source
reconstruction

Likelihood PID Boosting PID

normalize to
, fit e

simultaneous
fit to ande
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Neutrino Cross­section Model
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● by far the largest event sample (~200,000)

● NUANCE cross-section model tuned to    
  observed  CCQE rate

● only  – e differences are due to lepton   

  mass effects, mvs. me

● largest mis-ID background in e event sample

● NUANCE cross-section model tuned to            
  observed 0 rate

NC 0

CCQE



NUANCE
prediction A.A. Aguilar-Arevalo et al., "Measurement of Muon Neutrino Quasi-Elastic 

Scattering on Carbon", arXiv:0706.0926 [hep-ex], submitted to PRL
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Neutrino Cross­section Model
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● 90%+ pure π⁰ sample (mainly 
Δ→Nπ⁰)

● Measure rate as function of 
pion momentum

● Default MC underpredicts rate 
at low momentum

● analysis reaches 1.5 GeV

Invariant mass distributions 
in momentum bins

MC with systematic errors

Data with statistical errors

MC before tuning

constraining the NC 0 background with data
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Neutrino Cross­section Model
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other important mis-ID backgrounds

●  radiative decay, Δ Nγ→ , rate can be constrained by 0 rate measurement

– most of the NC-0 production is resonant production (through the )

– the branching ratio for the radiative decay is known

● “dirt” events are beam induced (so come in the beam time window), but the neutrino 
interacted outside of the tank (most from 0s).  

– low energy background.

– simulation is verified by using a dirt enhanced sample (close to the tank edge, 
moving inward)

shower

dirt
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Detector Response Model
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● detector modeled by a GEANT3 simulation with an added       
  “optical model”  to describe the production, absorption and  
   propagation of light within the tank 

 

MiniBooNE detector :
● 12 m diameter sphere
● 800T of mineral oil
● 1280 photomultiplier tubes
● 240 optically isolated tubes in a veto region 

neutrino 
cross-section 

model

neutrino 
flux prediction

detector
response model

track based
reconstruction

point source
reconstruction

Likelihood PID Boosting PID

normalize to
, fit e

simultaneous
fit to ande

tank

veto region
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O
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s delayed, isotropic light

delayed, isotropic light

prompt Cerenkov light

muon electron

 Optical model is quite complex
● Cherenkov, scintillation, fluorescence
● PMT Q/t response
● Scattering, reflections, prepulses
● Overall, about 40 non-trivial parameters

Detector Response Model

prompt Cerenkov light

e
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Detector Response Model
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15% 
E resolution
at 53 MeV

energy calibration

E (MeV)

Michel electrons from the 
decay of stopping muons

Cosmic muons stopping 
in scintillator cubes

 tracker

cosmic 

e

0 mass reconstruction
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Event Reconstruction & PID
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● At this point, the oscillation analysis splits down 
independent paths providing a powerful cross-check of the 
results after un-blinding

● The analyses have different background predictions and 
different sensitivities to the various systematics

● In the end, the track based reconstruction + Likelihood PID 
was slightly more sensitive to 2- oscillations and is the 
base line analysis published in Phys. Rev. Lett. 98, 231801 
(2007)

neutrino 
cross-section 

model

neutrino 
flux prediction

detector
response model

track based
reconstruction

point source
reconstruction

Likelihood PID Boosting PID

normalize to
, fit e

simultaneous
fit to ande
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Event Reconstruction & PID
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● Each tank event is just a collection of low level PMT-hit information for each tube that        
  recorded a signal

● We employ two approaches to extract particle information from these data :

charge, Q
time, t

position, x

resolutions TB PS
vertex 22 cm 24 cm
direction 2.8 deg 3.8 deg
energy 11% 14%

1. Track Based reconstruction +             
 Likelihood PID
● treats particles in the tank as extended 

tracks and carefully considers dE/dx 
effects

● extremely tenacious fit. . . 0 (2 ring) fitter 
takes ~8 minutes per event!

● PID algorithm based on Likelihood ratios 
of different particle hypotheses

2. Point Source reconstruction + Boosted           
 Decision Tree PID
● treats particles more like point-sources and is less 

careful about dE/dx
● fit not nearly as tenacious about getting out of 

local minima, particularly with 0 fit  
● reconstruction runs nearly 10 times faster
● to compensate for the more simple fitting 

procedure a more advanced PID algorithm (Boosted 
Decision Trees) is required to improve e selection
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Oscillation Analysis Pre­cuts
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1.6 µs

trigger window, no cuts

PMT hits in veto < 6

PMT hits in tank > 200

Beam Window

Sub-events

p

µ

n
Scintillation

Cerenkov 1

12C
Cerenkov 2

e

−+→+ µν µ pn CCQE:

remove cosmic  and decay e

remove >90% of beam 
induced  CCQE events 
(largest event category)

Sub-events == 1
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● construct sophisticated Q and T PDFs for different event types

● fit each event for 7 track parameters under a muon and electron hypothesis

● construct the Likelihood ratio log(Le/L)

● extend fit to include 2 electron-like tracks

● construct the invariant mass M

● construct the Likelihood ratio log(Le/L)

t,x,y,z

E

Radius

 CCQE events (2 subevent)

O
s
c

A
n
a
l
y
s
i
s

 Monte Carlo

e

Track Based Rec + Likelihood PID
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● construct sophisticated Q and T PDFs for different event types

● fit each event for 7 track parameters under a muon and electron hypothesis

● construct the Likelihood ratio log(Le/L)

● extend fit to include 2 electron-like tracks

● construct the invariant mass M

● construct the Likelihood ratio log(Le/L)

O
s
c

A
n
a
l
y
s
i
s

t,x,y,z

E1

s1

s2 E2

e 

Bl
in

d
 r

eg
io

n

Monte CarloMonte Carlo

Track Based Rec + Likelihood PID
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Point Source Rec + Boosting PID
● construct a large number of low and high level variables from PMT data :

➔ low-level (number of hit PMTs, fraction of early to late light, . . . )

➔ high-level (Q2, UZ, fit Likelihoods, . . . )

➔ topology (charge in annuli, isotropic light, . . . )

O
s
c

A
n
a
l
y
s
i
s UZ = cosz

Ekinetic
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Point Source Rec + Boosting PID
● construct a large number of low and high level variables from PMT data :

➔ low-level (number of hit PMTs, fraction of early to late light, . . . )

➔ high-level (Q2, UZ, fit Likelihoods, . . . )

➔ topology (charge in annuli, isotropic light, . . . )

 

● A total of 172 such variables were used as                                                
  input for the Boosted Decision Tree algorithm

● All 172 were checked for agreement within                                               
  errors in 5 important 'boxes' ( CCQE, NC 0,                                           
  NC-elastic, Michel decay e, 10% closed) 

● BDT is a technique involving the weighting                                                
  and combining of many decision trees into a                                             
  single output classifier 

O
s
c

A
n
a
l
y
s
i
s

Monte Carlo

non-oscosc

H. Yang, B. Roe, J. Zhu, “Studies of Boosted Decision Trees for MiniBooNE Particle Identification”,  Nucl.Instrum.Meth.A555; 370-385 (2005) 
B. Roe et. al. “Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification” Nucl.Instrum.Meth.A543; 577-584 (2005)
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● cannot compare data and Monte Carlo for PID variables within the signal region (blindness)

● use “side-bands” to verify the simulation

● apply log(Le/L) cut and check side-bands in e/0 separation variables 

O
s
c

A
n
a
l
y
s
i
s

Bl
in

d
 r

eg
io

n

Blind regionBlind region

Bl
in

d
 r

eg
io

n

signal box

M

log(Le/L

Verifying Sidebands (Likelihood PID)
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● use “side-bands” to verify the simulationO
s
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Bl
in

d
 r

eg
io

n

Blind regionBlind region

Bl
in

d
 r

eg
io

n

signal box
low M region for low 

values of log(Le/L)

high energy region for 
low mass values and high 
values of log(Le/L)

high log(Le/L) region for 

high values of M

2/ndf = 1.9/4
p = 0.76

Verifying Sidebands (Likelihood PID)
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● use “side-bands” to verify the simulation

Monte Carlo

Blind region

Sideband region

Energy distribution in 
the pid sideband region

● good agreement within systematic errors

● sideband dominated by 0 events 

Verifying Sidebands (Boosting PID)
Boosting PID score in 
the pid sideband region

Blind region



Kyoto University Seminar, Kyoto, Japan – October 9, 2007D. Schmitz – Columbia University, NY, NY 49

Oscillation Signal Fit
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● Two methods were also developed for applying the 
   constraint on (flux) x (cross-section) provided    
   by the observed -CCQE events

● Pre-Normalize and fit e

● predicted e distribution and errors are 

reweighted according to information from the  
sample

● Ne x Ne covariance matrix constructed for the 

e distribution
● only e bins contribute to signal fit 2

● Simultaneous fit to  and e

● construct a single, large covariance matrix 
(Ne+N) x (Ne+N)

● matrix includes correlations within the e 

distribution as well as between  and e

●  and e bins contribute to a total 2 in the fit 
for a signal

neutrino 
cross-section 

model

neutrino 
flux prediction

detector
response model

track based
reconstruction

point source
reconstruction

Likelihood PID Boosting PID

normalize to
, fit e

simultaneous
fit to ande
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Constructing the Error Matrix
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● Total error matrix is sum of 9 systematic error matrices and statistical errors

● using MC, map uncertainty in source parameters to uncertainty in neutrino energy, E
CCQE

➔ e.g. uncertainty in pion production in the target, cross-section params., optical model params.

● Individual error matrices constructed using multisim approach :
➔ A multisim is a random draw from underlying parameters
➔ correlations among input parameters are considered
➔ flux and cross-sections are produced from re-weighting.  Optical model multisims require 

generation of full hit-level Monte Carlo

Eij
 total=Eij

 +

Eij
 K+

Eij
 K0

Eij
 beamEij

 xsecEij
 0 -rateEij

 dirt-rateEij
 daq modelEij

 optical model

Eij
 =

1
M−1 ∑

m=1

M

Ni
m−Ni

MCN j
m−N j

MC

c1

c2

c5

c4

c3

e
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Constructing the Error Matrix
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● Total error matrix is sum of 9 systematic error matrices and statistical errors
 

e


e



Optical Model 
correlations

Ex:

Eij
 total=Eij

 +

Eij
 K+

Eij
 K0

Eij
 beamEij

 xsecEij
 0 -rateEij

 dirt-rateEij
 daq modelEij

 optical model

● energy shift in  spectrum               

  correlated with e

●
  small correlations between LE          

  and HE e bins and signal region

● things like cross-section and flux     
  can be fully correlated (mostly a       
  pure normalization error)
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Final Error Budget and Sensitivity
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 Flux from +/+ decay 6.2 / 4.3           √                √
 Flux from K+ decay   3.3 / 1.0           √      √
 Flux from K0 decay 1.5 / 0.4           √      √ 
 Target/beam models 2.8 / 1.3           √
 cross-section            12.3 / 10.5         √      √
 NC 0 yield 1.8 / 1.5           √     
 Dirt interactions 0.8 / 3.4           √       
 Optical model   6.1 / 10.5         √      √
 DAQ electronics model 7.5 / 10.8         √

Source of uncertainty
on e background

Constrained 
by MB data

Reduced by 
tying e to

TBL/BDT
error in %

● errors come from common uncertainties in flux, cross-section and detector models
● all sources have been constrained by MiniBooNE data

● several errors reduced by applying constraint from  data set

● TBL and BDT analyses are quite different :
● BDT better signal to background ratio
● TBL less sensitive to systematics
● about 50% event overlap in the two selections
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Final Error Budget and Sensitivity
O
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● TBL and BDT analyses are quite different : yet have similar sensitivities to oscillations

● BDT better signal to background ratio
● TBL less sensitive to systematics
● about 50% event overlap in the two selections

● sensitivities are determined from       
  simulation only

● before unblinding :
● all systematics must be finalized
● all PID selections must be 

finalized
● TBL chosen as base line result 

based on better sensitivity at 
high m2

● then. . . nothing left to do. . .but        
  open the box!!
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The Oscillation Results
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 →e Oscillation Results
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● begin with counting experiment only and sum up e candidate events in an energy range

● perform energy spectrum fit - predicted signal shape is different from backgrounds

prediction : 358±35syst 

data          : 380±19stat

TBL BDT
475 MeV < E < 1250 MeV 300 MeV < E < 1600 MeV

significance    :  0.55

prediction : 1069±225syst 

data          : 971±31stat

significance    :  −0.38
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 →e Oscillation Results
O
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● begin with counting experiment only and sum up e candidate events in an energy range

● perform energy spectrum fit - predicted signal shape is different from backgrounds

prediction : 358±35syst 

data          : 380±19stat

TBL BDT
475 MeV < E < 1250 MeV 300 MeV < E < 1600 MeV

significance    :  0.55

prediction : 1069±225syst 

data          : 971±31stat

significance    :  −0.38

No evidence se
en fo
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ct 
tw

o 

neutrin
o  

 →
 e

 osci
lla

tio
ns
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● so a limit is set on this interpretation  
  of the excess seen by LSND

● MiniBooNE and LSND incompatible at  
   a 98% CL for all m2 under a 2          
   mixing hypothesis 

● two independent analyses are in good 
  agreement

 →e Oscillation Results
O
s
c

A
n
a
l
y
s
i
s
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Beyond the Oscillation Search
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Low Energy DiscrepancyF
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● direct oscillations governed by

  would have peaked in the 500-1000 MeV region.  Our data agrees well with the expectation  
  in this region.

● However, an excess of events is seen below 475 MeV 

P =sin22sin21.27m2 L
E 
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Low Energy Discrepancy
● direct oscillations governed by

  would have peaked in the 500-1000 MeV region.  Our data agrees well with the expectation  
  in this region.

● However, an excess of events is seen below 475 MeV 

P =sin22sin21.27m2 L
E 

shape of discrepancy not compatible 
with direct →e oscillation scenarios

F
u
t
u
r
e

O
u
t
l
o
o
k
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Low Energy DiscrepancyF
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   Eν 
Q E [M eV]             200­300              300­475            475­1250       

total background      284±25               274±21             358±35   (syst. error)
   νe intrinsic                  26                      67                   229

     νµ induced                258                   207                   129         

         NC π0                                  115                     76                     62

         NC ∆ N  → γ               20                     51                     20
         Dirt                        99                     50                     17      

         other                     24                     30                     30                            

Data                           375±19              369±19            380±19     (stat. error) 

Data­M C                 91±31            95±28            22±40     (stat+syst)   

oscillation analysis regionlower energy bins

● NC π0 largest
● Dirt background 

significant
● NC ∆→Nγ falling off
● Intrinsic νe negligible

• Backgrounds all 
have similar rates:

● NC π0

● Dirt bkgnd 
● NC ∆→N
● Intrinsic νe 

● Intrinsic νe largest 
background
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event/POT vis day, 300<Enu<475 MeV

No Detector anomalies found : No Reconstruction problems found :

● investigating possible explanations:

● detector anomalies or reconstruction problems?

● incorrect estimation of a background?

● missing background?

● new physics including exotic oscillation scenarios, neutrino decay, Lorentz violation?

● is it related to excess seen by LSND?
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Future Run/Analysis PlansF
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● Working on several publications in support of and extensions to this analysis

●  CCQE paper submitted to PRL

● NC 0 background measurement

● combined TBL/BDT analysis

● combined LSND-MiniBooNE-KARMEN oscillation analysis 

● others. . . 

● Continue to re-examine low E backgrounds and significance of low E excess

● MiniBooNE currently running in antineutrino mode and is proposing to run in     
  this mode for several more years 

● important antineutrino low energy cross-sections not measured before

● another low energy data set

● direct test of LSND if enough statistics (sensitivities in upcoming PAC report)
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Future Run/Analysis PlansF
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● Neutrino events in MiniBooNE from NuMI beam

● SciBooNE currently taking data in Booster Neutrino Beam

● MicroBooNE, a 70 ton LArTPC detector, has been proposed for BNB to study      
  low energy region

● sensitive at low energies

● e/ separation

● ~80% efficiency
● low backgrounds
● liquid argon detector development

e

0
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NuMI → MiniBooNEF
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● can events from NuMI provide any 
insight on low energy excess seen 
from BNB?

● beam contains enhanced (~x10) e 
component from kaon decays

● L/E is similar to standard MB 
(750m/0.75 GeV)

81%

13%

5%

1%








e


e

93%

6%

0.6%

<0.1%








e


e

BNB → MB NuMI → MB
                     NuMI → MB flux prediction

MiniBooNE

  NuMI absorber
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NuMI → MiniBooNEF
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● can events from NuMI provide any 
insight on low energy excess seen 
from BNB?

● beam contains enhanced (~x10) e 
component from kaon decays

● L/E is similar to standard MB 
(750m/0.75 GeV)

● nice agreement seen in -CCQE 

and 0 events

● e analysis coming soon

 CCQE
NC

MiniBooNE

  NuMI absorber
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Summary
● First results from MiniBooNE have seen no evidence for the     
  two neutrino direct  → e oscillation interpretation of the      
  LSND result

(Phys. Rev. Lett. 98, 231801 (2007), arXiv:0704.1500v2 [hep-ex])

●  An excess of events is seen between 200-475 MeV in the e         
   distribution and is still being investigated/interpreted 

● Look for electron result from NuMI → MB neutrino beam in           
  ~November

● Currently collecting antineutrino data 

S
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m

m
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r

y
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Domo arigato!
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Neutrino Cross­section Model
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charged-current quasi-elastic events

A.A. Aguilar-Arevalo et al., "Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon", arXiv:0706.0926 [hep-ex], submitted to Phys. Rev. Lett.

● A deficit is seen in the data for low values   
of the momentum transfer, Q2

 

● Solution: use  data sample to adjust 
available parameters in present model to    
reproduce data.  only  – e differences       

are due to lepton mass effects, mvs. me 

● Model describes CCQE data well

● From Q2 fits to MiniBooNE  CCQE data:

– MA
eff -- effective axial mass

– Elo
SF  -- Pauli Blocking parameter

● From electron scattering data:

– Eb -- binding energy

– pf  -- Fermi momentum

data/MC 
after fitting

MA = 1.23 +- 0.20 GeV
 = 1.019 +- 0.011
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Muon bremsstrahlung
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● muon radiates a hard photon

● rate for this effect calculated by Efrosinin (arXiv:hep-                    
  ph/0609169v1) and more recently by Bodek (arXiv:0709.4004v2  
  [hep-ex])

● the relevant question for MiniBooNE, however, is   
  do these events look like electrons in our         
  detector?

● can use the two sub-event sample to answer:

● start with 2 sub-event CCQE sample, erase 2nd 
sub-event and run PID on first sub-event only

● start with 2 sub-event CCQE sample, move 2nd 
sub-event in time to overlap the first sub-
event (e/ directly on top of )
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● muon radiates a hard photon

● rate for this effect calculated by Efrosinin (arXiv:hep-                    
  ph/0609169v1) and more recently by Bodek (arXiv:0709.4004v2  
  [hep-ex])

● the relevant question for MiniBooNE, however, is   
  do these events look like electrons in our         
  detector?

● can use the two sub-event sample to answer:

● start with 2 sub-event CCQE sample, erase 2nd 
sub-event and run PID on first sub-event only

● start with 2 sub-event CCQE sample, move 2nd 
sub-event in time to overlap the first sub-
event (e/ directly on top of )
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● muon radiates a hard photon

● rate for this effect calculated by Efrosinin (arXiv:hep-                    
  ph/0609169v1) and more recently by Bodek (arXiv:0709.4004v2  
  [hep-ex])

● the relevant question for MiniBooNE, however, is   
  do these events look like electrons in our         
  detector?

● can use the two sub-event sample to answer:

● start with 2 sub-event CCQE sample, erase 2nd 
sub-event and run PID on first sub-event only

● start with 2 sub-event CCQE sample, move 2nd 
sub-event in time to overlap the first sub-
event (e/ directly on top of )

out of 10,000 events, the numbers 
passing e cuts are:

28 Data
32 Monte Carlo
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Muon bremsstrahlung
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● muon radiates a hard photon

● rate for this effect calculated by Efrosinin (arXiv:hep-                    
  ph/0609169v1) and more recently by Bodek (arXiv:0709.4004v2  
  [hep-ex])

● the relevant question for MiniBooNE, however, is   
  do these events look like electrons in our         
  detector?

● can use the two sub-event sample to answer:

● start with 2 sub-event CCQE sample, erase 2nd 
sub-event and run PID on first sub-event only

● start with 2 sub-event CCQE sample, move 2nd 
sub-event in time to overlap the first sub-
event (e/ directly on top of )

● conclusion: these events still look very muon-  
  like and the small rate for mis-ID is well          
  predicted by the Monte Carlo
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Background Predictions in Signal Region
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475 MeV – 1250 MeV

94

132
62

dirt 17
20

other 33
358

126


e
K


e



0

N

LSND e

S

B 
=6.7

TBL BDT
300 MeV – 1600 MeV

253

343
224

dirt 117
78

other 54
1069

273


e
K


e



0

N

LSND e

S
B 

=8.3

m2 = 1.2

sin2(2) = 0.003
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Signal Efficiency
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TBL BDT
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The Fit for Oscillations
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● In the combined fit used for the BDT selected events the 2 has contributions from the   
   and e distributions.   
 

NMC,i
 e  ≡ NMC ,i

 e  m2 ,sin2 2

● the e prediction depends on the oscillation   
  signal being tested. . .

. . . and a 2 surface can be mapped

2=[Ndata
e −NMC

e ]i  [Ndata

 −NMC

 ]iEij
 e,e Eij

 e ,

Eij
 ,e Eij

  ,[Ndata
e −NMC

e ]j

[Ndata
 −NMC

 ]j


m
2


