Physics of CMB Polarization and Its Measurement

HEP seminar at Kyoto University
April 13th, 2007

Akito KUSAKA
University of Tokyo
Outline

Physics of CMB and its Polarization
- What does WMAP shed light on?
- Unsolved Problems: Beyond SM
- CMB Polarization as a Probe for Inflation

Measurement of CMB Polarization
- Detection Techniques
- Experimental Status and Prospects
 - Current Measurements (1st generation)
 - 2nd Generation Experiments, and beyond
Physics of CMB and Its Polarization
Cosmology After WMAP

WMAP (+ Others)

- **Flat ΛCDM**
 - $\Omega_{\text{all}} \sim 1$
 - $\Omega_{\Lambda} = 0.74 \pm 0.06$
 - $\Omega_m h^2 = 0.13 \pm 0.01$
 ($\Omega_m \sim 0.26$)
 - $\Omega_b h^2 = 0.022 \pm 0.001$

- **Implications**
 - Dark Energy $\sim \Lambda$
 - Consistent w/ Inflation
Solved and Unsolved Problems

Solved: Time Evolution of the Universe

Unsolved: Physics of the Beginning (Inflation)
Source of the Evolution (Dark Energy, Dark Matter)
Unsolved Problems

- **Inflation**
 - Is it true?
 - What’s the correct model?
 - Shape of potential: Physics at GUT Scale?
 - Signature: Primordial Gravitational-Wave (CGB?)
 - Detectable via CMB Polarization

- **Dark Energy**
 - Equation of State: \(w = \frac{p}{\rho} \)
 - Dark Energy = Cosmological Constant? (i.e., \(w = -1 \)?)
Digression: Can we go further with CMB?

- **Cosmic Variance**
 - We want to measure the “PDF” of CMB.
 - We only have one realization (our sky), i.e., one event.
 - TT at small l (incl. first peak) is now cosmic variance limited.

- **To go further:**
 - TT at large l
 - Polarization

TT (Temperature) Correlation

Black: WMAP Three-Year
Green: WMAP First-Year
Gray Band: Cosmic Variance Expectation
CMB Polarization

- CMB is from last (Thomson) scattering → Linearly polarized
- Anisotropy → Non-zero overall polarization
E-mode and B-mode

- **Polarization: Tensor-field**
 - Tensor = “Bar” without direction
 - c.f. Vector = “Bar” with direction

- **Decomposable into E-mode and B-mode**
 - Analogous to the vector field decomposition to (rot. free mode) + (div. free mode)
B-mode Polarization

voie sourced by gravitational wave from Inflation
- Unique signal of Inflation
- Intensity of B-mode \propto Tensor/Scalar $\propto V$
- V: Inflation potential, GUT scale?

Gravitational lensing converts E-mode \rightarrow B-mode at large l.

TT is around here ($\sim 10^3 \mu K$)

$r = (T/S)^2$

T/S~0.1 if V~GUT scale
More on CMB Polarization

- **Lensing B-mode**
 - Not only contamination for primordial B-mode
 - Can be a probe for mass distribution → information for Dark Energy w

- **E-mode and TE-correlation**
 - Improvement in cosmological parameters
 - Consistency check (robustness w.r.t. assumptions such as adiabaticity)

- **TB- and EB-correlation**
 - Zero (otherwise, there is parity violation)
Measurement of CMB Polarization
Primary Target: B-mode

Two possible targets

- **Small l ($l \sim 5$: $\sim 50^\circ$)**
 - Free from lensing B
 - Originates from reionization
 - Advantageous to Satellite

- **Large l ($l \sim 100$: $\sim 2^\circ$)**
 - Could be lensing B dominant (subtract?)
 - Ground based is competitive

NOTE: atmosphere is not polarized
Basics of Polarization

- **Stokes parameters** (I, Q, U, V)
 - A set of parameters fully characterizing intensity and polarization of radio wave.
 - I: Intensity ($\rightarrow T$ in CMB)
 - Q, U: Two linear polarization ($\rightarrow E, B$ in CMB)
 - V: Circular polarization (zero in CMB)

$$Q = E_x^2 - E_y^2$$

$$U = 2E_xE_y$$

$$V = 0$$
Two technologies: Bolometer vs. HEMT
Feasibility
Array
Choice of band
 > Which region of 20G Hz~500G Hz
 > “Foreground” contribution
HEMT (+ diode detector)

“Usual” way of radio wave detection: amp. \rightarrow rectification

Established technology
 - WMAP, DASI, CAPMAP, ...

Limited by quantum noise: $T_{\text{det}} \propto h \nu / k$
 - Good in low ν ($\nu < 100$ GHz)
HEMT (+ diode detector)

Pseudo-correlation polarimeter
(from CMB task force)

- (Pseudo-)Correlation polarimeter
 - Gain diff. cancellation

- Recent technology breakthrough
 (MMIC + packaging) for arraying

CAPMAP polarimeter

QUIET polarimeter (90GHz)

~30cm ~3cm
Bolometer

- Direct detection of total “power” of radio wave
- No quantum noise limit
- Technically challenging
- Low ν \rightarrow large heat load
 - Difficulty in low ν
 - Overcome by antenna coupled bolometer
- Promising detector type in future
Bolometer

- Good at making large array
- Antenna coupled bolometer has polarization sensitivity (PSB) $|Ex|^2$, $|Ey|^2$ measurement
“Foreground”

- Contamination for “Background” measurement: “Foreground”
- Primary, inevitable systematic error
- Two large sources
 - Synchrotron radiation from cosmic ray
 - Dust emission (dust aligned in B field)

Spectra of CMB and foreground sources

PLANCK “Blue Book”
Choice of Technology

- HEMT
 - Quantum noise limit: $T_{\text{det}} \sim h\nu/k_B$
 - Good at $\nu < 100\text{GHz}$
 - Relatively established
 - MMIC + packaging technology for array
 - (Pseudo-)correlation polarimeter

- Bolometer
 - No quantum noise limit
 - Good at $\nu > 100\text{GHz}$
 - Also good at $\nu < 100\text{GHz}$ with antenna coupling
 - Challenging
 - Suitable for array
 - “Brute force” polarimeter
 - (Correlator type is also possible)
Multi-pole analysis

- **TT correlation (scalar field)**
 - Spherical harmonics expansion

- **Polarization (tensor field)**
 - Tensor spherical harmonics expansion
 - Simple FT of div. and rot. field (for small patch of the sky)

- **Practical difficulty**
 - Irregular sampling
 - Border of patch

Three-Year WMAP, Hinshaw et al.
Current Status

- Significantly non-zero EE correlation is found
 - WMAP, DASI, CBI, BOOMERanG, CAPMAP
- WMAP TE correlation
 - Improvement of limits on cosmological parameters
- No significant BB measurement, yet

EE Correlation

Three-Year WMAP, Page et al.
Coming Experiments

- **Targets**
 - Primordial B from inflation
 - Lensing B for mass profile measurement (experiments w/ high resolution)
 - E to improve limits on cosmological parameters

- **Detector improvement**
 - Large array → Better statistics
 - Better detector sensitivity
Coming Experiments

- Bolometer
 - (AMiBA), BICEP, BRAIN/ClOVER, EBEX, MBI-B, MAXIPOL, PAPPA, PolarBear, Polatron(?), QUaD, (SPT), Spider

- HEMT
 - BaR-SPOrt(?)/SPOrt(?), QUIET

- Bolometer + HEMT (depending on freq.)
 - PLANCK

Balloon
Taking data
(Main target=SZE)

See the following site for compilation
http://lambda.gsfc.nasa.gov/links/experimental_sites.cfm
QUIET

- Q/U Imaging Experiment
- Detector: HEMT
 - Two bands: W-band (90GHz) and Q-band (40GHz)
 - HEMT array (91 elements for W, 19 elements for Q)
 - The only next generation HEMT experiment
 - The only next generation (B competitive) program straddling across 60GHz
 - NOTE: 60GHz = WMAP implies lowest foreground
- Site: Chile, Atacama
- Collaboration
 - ~10 US institutes (incl. CAPMAP&CBI) + Oxford, MPI Bonn
 - ~20 staff + students
- Cost: ~a few M USD
QUIET

CBI site at Chile

Sensitivity

Deployment: 2007 Fall, First Science Result: 2008 Summer

All the figures from QUIET web site
http://quiet.uchicago.edu/
Next Next Generation

- Ultimate CMB experiment
 - Satellite
 - Target: B-mode at low l
 - Bolometer
- (Ground Based)
- Japanese community may take part
 - Tohoku
 - KEK
 - ...

Beyond Einstein Program
http://universe.nasa.gov/program.html
Summary

- Unsolved Problems of Cosmology
 - Inflation and Dark Energy
- B-mode Polarization of CMB
 - Sensitive to Inflation
- Detector Technology
 - Bolometer vs. HEMT
- Current Measurement: E-mode found
- Experiments Dedicated to B-mode: coming soon...