BAYES versus FREQUENTISM
The Return of an Old Controversy

* The ideologies, with examples
- Upper limits

- Systematics

Louis Lyons, Oxford University
and CERN



It 1s possible to spend a lifetime
analysing data without realising that
there are two very different
approaches to statistics:

Bayesianism and Frequentism.



How can textbooks not even mention

Bayes/ Frequentism?

For simplest case (m e O') < Gauss 1an
with no constraint on m(t rue ) then

m—ko <m(true) <m+ko

at some probability, for both Bayes and Frequentist
(but different interpretations)

4
See Bob Cousins “Why isn’t every physicist a Bayesian?” Amer Jrnl Phys 63(1995)398



We need to make a statement about
Parameters, Given Data

The basic difference between the two:

Bayesian : Probability (parameter, given data)
(an anathema to a Frequentist!)

Frequentist : Probability (data, given parameter)
(a likelihood function)



PROBABILITY
MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as n-> infinity
Repeated “identical” trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)
Varies from person to person
Quantified by “fair bet”



Bayesian versus Classical
Bayesian
P(A and B) = P(A;B) x P(B) = P(B;A) x P(A)
e.g. A =eventcontains t quark
B = event contains W boson
or A=youarein CERN
B = you are at Workshop

Completely uncontroversial, provided....
P(A;B) = P(B;A) x P(A) /P(B) '



P(B; 4) x P(4)

Bayesian p(4;B)=—"""" Bayes
' , P( B) | Theorem
P(hyothesis; data) a P(data; hypothesis) x P(hypothesis)
T 3 7
posterior likelihood prior

Problems: P(hyp..) true or false
- “Degree of belief”

Prior What functional form?

Coverage

Goodness of fit



P(hYDothesis.....")'i'. True or False
 “Degree of Belief’
credible interval
Prior: What functional form?
Uninformative prior:

flat? In which variable? e.g m,m",Inm,...?

Unimportant if “data overshadows prior”
Important for limits ;

Subjective or Objective prior? !
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P (Data;Theory) # P (Theory;Data)
HIGGS SEARCH at CERN
|s data consistent with Standard Model?
or with Standard Model + Higgs?
End of Sept 2000 Data not very consistent with S.M.
Prob (Data ; S.M.) < 1% valid frequentist statement
Turned by the press into: Prob (S.M. ; Data) < 1%
and therefore Prob (Higgs ; Data) > 99%

l.e. “lt is almost certain that the Higgs has been seen”
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P (Data;Theory) % P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%
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Example 1: Is coin fair ?
Toss coin: 5 consecutive tails
What is P(unbiased; data) ? i.e.p =74
Depends on Prior(p)
If village priest prior ~ 0(1/2)
If stranger in pub prior ~ 1 for O<p<1

(also needs cost function)
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Example 2 : Particle Identification

Try to separate 7 and protons
probability (p tag;real p) = 0.95

probability ( /T tag; real p) = 0.05
probability (p tag ; real (77) = 0.10

probability ( 77 tag ; real 7T ) = 0.90
Particle gives proton tag. What is it?

Depends on prior = fraction of protons

If proton beam, very likely

If general secondary particles, more even

14

If pure T beam, ~ 0



Hunter and Dog

1) Dog d has 50% h
probability of being |
100 m. of Hunter h

2) Hunter h has 50%
probability of being X -
within 100m of Dog
d

River X ?0 River x =1 km

15



Given that: a) Dog d has 50% probability of being -
100 m. of Hunter

Is it true that b) Hunter h has 50% probability of
being within 100m of Dog d ?

Additional information
* Rivers at zero & 1 km. Hunter cannot Cross them.

0<h<lkm

» Dog can swim across river - Statement a) still true

If dog at —101 m, hunter cannot be within 100m of
dog |

Statement b) untrue

16
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Classical Approach

Neyman “confidence interval” avoids pdf for 4
uses only P(x; u) |

Confidence interval th > U2
P( 41 - U2 contains u )= a True forany u

Varying intervals fixed
from ensemble of
experiments

Gives range of K for which observed value x,, was “likely” (X )
Contrast Bayes : Degree of belief = ¢ that isin th - U>
18
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COVERAGE

If true forall #:  “correct coverage”

P< @ for some H: “undercoverage”
(this is serious !)

P> o for some u: “overcoverage”

Conservative

Loss of rejection
power

19



ﬂl < ﬂ < ﬂu at 90% confidence

Frequentist ’Lll and ,Uu known, but ranfjom
,Ll unknown, but fixed
Probability statement about L& and A
. and known, and fixed
Bayesian o pho

A unknown, and random
Probability/credible statement about /,l
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Classical Intervals

* Problems [ Hard to understand e.g. d’Agostini e-mail
Arbitrary choice of interval
Possibility of empty range
Over-coverage for integer observation
" e.g. #ofevents
Nuisance parameters (systematic errors)

«Advantages [T IR

Well defined coverage

22
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Importance of Ordering Rule

Neyman construction in 1 parameter X
2 measurements X1 X2

p(x;4)=G(x-ul)

. ey : y
An aside: Determination of single parameter via ¥

Acceptable level of }/

Range of parameters given by

1) Values of A for which data
is likely i.e. p(¥°)is
acceptable or

2) 2 )< £ (35 +1

2) 1s good
- .
1) Range depends on # ;,

[“Confidence interval coupled to goodness of fit"] 23




e Neyman Construction

For given K, acceptable (x1, x2)
satisfy

o SRR e _ﬂ)z +(x2— ,u)z < Ccut
Defines cylinder in (,u,xl,xz)space
Experiment gives (xl, X2)—) u interval

Range depends on |x1 —X2

e

Range and goodness of fit are coupled 2



That was using Probability Ordering
Now change to Likelihood Ratio Ordering

For X1 # X2 ,no value of L gives very good fit

For Neyman Construction at fixed 4 , compare:

(xl ‘ﬂ)2 ” (x2 —ﬂ)2 with (x1 - ,utm)2 + (Xz - ,ubes,)z

where (xl + Xy )/2

2
giving 2[/12 — plx +x, )+ x1 + xz)z} x1 + X5 ]

Cutting on Likelihood Ratio Ordering gives:
c

ntx, [C

£

25



Therefore, range of H is
Constant Width

Independent of X, — X,

Confidence Range and Goodness of Fit are completely decoupled

26



‘Bayesian

Pros:

Easy to understand

Physical Interval

Cons:

Needs prior
Hard to combine

Coverage

27



Standard Frequentist

Pros:

Coverage

Cons:

Hard to understand
Small or Empty Intervals

Different Upper Limits

28
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Finally, we show the coverage of the 1o unified intervals:
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For example

N

SYSTEMATICS
T T T 5
Observed Physics we need to know these,

T parameter probably from other
measurements (and/or theory)
NzJN

o Uncertainties 2errorin O
for statistical errors -

Some are arguably statistical errors

Shift Central Value LA=LAx o,
Bayesian b= b, > O b
Frequentist

29
Mixed



N

events

o LA+D

Simplest Method
Evaluate o, using LA, and b,

Move nuisance parameters (one at a time) by
their errors > édo,, & do,

If nuisance parameters are uncorrelated
Combine these contributionsin quadrature

30

- total systematic



Bayesian

Without systematics p(a; N) - p( N O')II(O')
2

prior
With systematics

p(a, LA, b; N) oc p(N; o, LA, b)ﬂ(a, LA, b)

T
~I1,(o )I1,(LA)I1,(p)

Then integrate over LAand b

P(G N ) = Hp(cf, LA,b; N )dLA db

31



plo:N)= 1p(o.24,6:N)dLa ab
If 11, (0' )= constant and HZ(LA) = truncated Gaussian TROUBLE!

Upper limiton O from jp(o*,N)da

Significance from likelihood ratio for =0 and Gh

32



Frequentist
Full Method

Imagine just 2 parameters O and LA

and 2 measurements N and M

T T

Physics Nuisance

Do Neyman construction in 4-D
Use observed N and M, to give

Confidence Region LA

33



Then project onto O axis |
This results in OVERCOVERAGE

Aim to get better shaped region, by suitable
choice of ordering rule

Example\f Profile likelihood ordering




Full frequentist method hard to apply in several
dimensions

Used in <3 parameters

For example: Neutrino oscillations (CHOOZ)
sin’ 26 , Am”
Normalisation of data

Use approximate frequentist methods that reduce
dimensions to just physics parameters

e.g. Profile pdf
Contrast Bayes marginalisation

Distinguish “profile  ordering”

35
Properties being studied by Giovanni Punzi



Talks at FNAL CONFIDENCE LIMITS WORKSHOP
(March 2000) by:
Gary Feldman
Wolfgang Rolke hep-ph/0005187 version 2

Acceptance uncertainty worse than Background uncertainty

Limitof CL.asc — 0
wCl.forg =60

Need to check Coverage

36



Method: Mixed Frequentist - Bayesian

Bayesian for nuisance parameters and

Frequentist to extract range
Philosophical/aesthetic problems?

Highland and Cousins S

(Motivation was paradoxical behavior of Poisson limit
when LA not known exactly) |

37




Bayesian versus Frequentism

Bayesian Erequentist I

Basis of Bayes Theorem --> Uses pdf for data,
method Posterior probability for fixed parameters

distribution
Meaning of | Degree of belief Frequentist definition
probability
Problem of |Yes Anathema
parameters? |
Needs prior? | Yes No
Choice of Yes Yes (except F+C)
interval?
Data Only data you have ....+ more extreme
considered
likelihood Yes No -

principle?




- Bayesian versus Frequentism

Bayesian Frequentist
Ensemble of |No Yes (but often not
experiment explicit)
Final Posterior probability Parameter values
statement distribution Data is likely
Unphysical/ Excluded by prior Can occur

empty ranges

Systematics Integrate over prior Extend dimensionality
of frequentist
construction

Coverage Unimportant - | Built-in

Decision Not useful

making

Yes (uses cost function)




Bayesianism versus Frequentism

“Bayesians address the question everyone is
interested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”
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