

南野彰宏(京都大学) 他 T2Kコラボレーション

平成25年度宇宙線研究所共同利用成果発表会 2013年12月20日

- J-PARCでほぼ純粋なv_uビームを生成。
- 生成点直後の前置検出器と295km離れた
 スーパーカミオカンデでニュートリノを観測。
- ニュートリノ振動の精密測定。

T2K実験における振動モード 1. $\nu_{\mu} \rightarrow \nu_{e} (\nu_{e}$ 出現モード) 2. $\nu_{\mu} \rightarrow \nu_{\mu}$ 以外 (ν_{μ} 消失モード)

 \mathcal{V}_{τ}

- 6.57×10²⁰ POT (Proton On Target)のデータを取得。
 →T2K実験の目標統計の8%
- 最高235kWでのビーム運転を達成。(設計値は750kW)

ニュートリノ振動解析の流れ

<u>vフラックス予測</u>

- ハドロン生成実験データ (特にNA61@CERN)
- ビームモニター測定
- Geant3ベースのシミュレータ

<u>ND280の測定</u>

μの運動量と角度分布

v反応断面積

- MiniBooNE等の実験データ でモデル構築&誤差見積り
 (シミュレータ=NEUT)
- <u>ND280フィット</u>
- SKとND280で相関が強い systematicパラメータの誤差を削減

ND280の測定とフィット

- 各ニュートリノ相互作用を高純度化した3サンプルに分類。
- ミューオンの運動量、角度分布をフィット。
- SKとND280で相関の強いsystematicパラメータとその誤差を導出。

ND280フィットによる誤差の削減

vフラックスとv反応断面積のsystematicパラメータのうち、
 Super-KとND280で相関が強いものの誤差を削減。

ν_µ消失モードの解析結果 Phys. Rev. Lett. 111, 211803 (2013)

2012年6月までのデータ 3.01x10²⁰ POT

μ				
Systematicパラメータ	ND280フィット前 ND280フィット			
νフラックス/反応 (ND280フィット)	21.8%	4.2%		
ν反応 (ND280フィットしない)	6.3%			
Super-K	10.7%			
Total	25.1%	13.1%		

|Δm₃₂²|=2.4x10⁻³ eV²/c⁴, sin²2θ₂₃=1.0の場合

ν_µ消失モードの解析結果 (3.01x10²⁰ POT)

- Super-Kでのエネルギー分布を尤度比を用いてフィット。
- Run1-3のデータで世界最高レベルの精度で測定。

v_e出現モードの解析結果 arXiv:1311.4750 [hep-ex] accepted by PRL

2013年5月までのデータ 6.57x10²⁰ POT

Super-Kのv_eイベント選択 (6.57x10²⁰ POT)

Photon

Conversions

- イベント再構成アルゴリズム
 - 従来: リングの発光パターンでフィット (POLfit)
 - 今回:様々な粒子を想定し、時間・電荷を予想して 複数の飛跡までフィット (fiTQun)
- π⁰除去以外のイベント選択: 従来と同じ
- π⁰除去
 - 従来: 再構成したπ⁰質量のみでカット
 - 今回: 再構成したπ⁰質量と尤度比を用いた2次元カット
- ν_eイベント数は-2%, π⁰ B.G.は-70% (従来との比較)

ve候補イベント数と系統誤差(6.57x10²⁰ POT)

Super-Kでの v_e 候補イベント数(ND280フィット後)

データ	28			
MC	$sin^2 2\theta_{13}$ =0	$\sin^2 2\theta_{13} = 0.1$		
ν _µ →ν _e 信号	0.4	17.3		
ν_e B.G.	3.4	3.1		
ν_{μ} B.G.	0.9	0.9		
\overline{v}_{e} + \overline{v}_{μ} B.G.	0.2	0.2		
MC 合計	4.9	21.6		

sin²2 θ_{23} =1.0, Δm_{32}^2 =3.4x10⁻³eV² (Normal hierarchy), δ_{CP} =0

Super-Kでのv_e候補イベント数に対する系統誤差

Systematicパラメータ	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
, , ,	NDフィット前	フィット後	NDフィット前	フィット後
νフラックス/反応 (NDフィット)	21.7%	4.8%	25.9%	2.9%
v反応 (NDフィットしない)	6.8%		7.5%	
Super-K	7.3%		3.5%	
合計	24.0%	11.1%	27.2%	8.8%

ν。出現モードの解析結果(6.57x10²⁰ POT)

- Super-Kでの電子のp-0分布を最尤法を用いてフィット。
- θ₁₃=0を7.3σで棄却し、v_u→v_e振動を発見。
- $|\Delta m_{32}|=2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2\theta_{23}=0.5$, $\delta_{CP}=0$ のとき Normal hierarchy ($\Delta m_{32}^2 > 0$) 0 0 0 0

$$\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$$

Inverted hierarchy (
$$\Delta m_{32}^2 < 0$$
)

$$\sin^2 2\theta_{13} = 0.170^{+0.045}_{-0.037}$$

 θ₁₃−δ_{CP}の信頼領域
 - T2Kの v_u 消失モードの解析結果 $(\theta_{23}, |\Delta m_{32}|)$ への制限)を尤度関数に追加

δ_{CP}への制限 (6.57x10²⁰ POT)

- T2Kの測定結果と原子炉ニュートリノによるθ₁₃の測定結果とを 組み合わせてδ_{CP}への制限を与えた。
- δ_{cp}=-π/2が最も好まれる。
- 以下の領域を90% C.L.で棄却。
 - 0.19 $\pi < \delta_{CP} < 0.80\pi$ (Normal hierarchy)
 - $-\pi < \delta_{CP} < -0.97\pi$, $-0.04\pi < \delta_{CP} < \pi$ (Inverted hierarchy)

今後の目標と予想感度

- T2Kがv_µ→v_e振動を7.3σで発見し、原子炉実験がsin²2θ₁₃を高 精度で測定した。
- T2K実験の今後の目標
 - θ₂₃と|Δm₃₂²|の精密測定
 - δ_{CP} 、 θ_{23} octant、v質量階層性の測定
- 予想感度study
 - 今回は θ_{23} octantのみ発表する。(δ_{CP} とMHは別の機会に)
 - T2K approved POT = 7.8×10^{21} POT
 - v_e出現モードとv_u消失モードを同時に解析
 - マモードでのデータ収集も想定する。

予想感度 (θ_{23} octant)

<u>Case study</u>: sin²0₂₃ = 0.4, Normal hierarchyの場合

予想感度 (θ₂₃ octant)

90% C.L.の感度 (青色の領域内ならoctantを決定可) 点線: 系統誤差なし

仮定

- $sin^2 2\theta_{13} = 0.1$
- $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (Normal hierarchy)
- 原子炉実験の予想感度δ(sin²2θ₁₃)=0.005

振動解析以外

まとめ

- v_e出現モード
 - θ₁₃=0を7.3σで棄却し、ν_μ→ν_e振動を発見。
 - T2K実験の結果と原子炉ニュートリノの測定結果とを組み合わ せて、 δ_{CP} への制限を与えた。
- v_µ消失モード
 - 2012年6月までのデータを使いnm消失モードの解析を行い、 世界最高レベルの精度でθ₂₃と|Δm₃₂²|を測定した。
 - 2013年5月までのデータを使った解析結果を近日公開予定。
- 今後の目標
 - θ_{23} と Δm_{32}^2 の精密測定と δ_{CP} 、 θ_{23} octant、v質量階層性の測定
- 振動解析以外
 - ニュートリノ反応断面積の測定など、さまざまな解析が進行中。