Results from T2K

A. Minamino (Kyoto) on behalf of the T2K collaboration Sep. 30, 2013 KEK-PH 2013 FALL @ KEK

Neutrino Mixing

- θ_{13} is now precisely known, and relatively large
- It may now be possible to put constraints on δ_{CP} (Long-baseline experiments only: T2K & NOvA)
- However, the large uncertainty on θ_{23} is now limiting the information that can be extracted from v_e appearance measurements
- Precise measurements of all the mixing angles will be needed to maximize sensitivity to CP violation

Oscillation Prob.

$$\begin{split} P_{\mu \to \mu} &\approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E^2} \right) \\ &+ \text{(subleading terms)} \end{split}$$

$$\begin{split} P_{\mu \to e} &\approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) \\ &+ \text{(CPV term) + (matter term) + ...} \end{split}$$

The T2K Collaboration

*				
Canada	Italy	Poland	Spain	
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	IFAE, Barcelona	U. Sheffield
U. Alberta	INFN, U. Napoli	NCBJ, Warsaw	IFIC, Valencia	U. Warwick
U. B. Columbia	INFN, U. Padova	U. Silesia, Katowice		
U. Regina	INFN, U. Roma	U. Warsaw	Switzerland	USA
U. Toronto		Warsaw U. T.	ETH Zurich	Boston U.
U. Victoria	Japan	Wroklaw U.	U. Bern	Colorado S. U.
U. Winnipeg	ICRR Kamioka		U. Geneva	Duke U.
York U.	ICRR RCCN			Louisiana S. U.
	Kavli IPMU	Russia	United Kingdom	Stony Brook U.
France	КЕК	INR	Imperial C. London	U. C. Irvine
CEA Saclay	Kobe U.		Lancaster U.	U. Colorado
IPN Lyon	Kyoto U.		Oxford U.	U. Pittsburgh
LLR E. Poly.	Miyagi U. Edu.		Queen Mary U. L.	U. Rochester
LPNHE Paris	Osaka City U.		STFC/Daresbury	U. Washington
	Okayama U.		STFC/RAL	
Germany	Tokyo Metropolitan U.	~500 members.	U. Liverpool	
Aachen U.	U. Tokyo	59 Institutes,		
		11 countries		3

The T2K Experiment

Super-K Detector

J-PARC Accelerator

- The T2K experiment searches for neutrino oscillations in a high purity v_μ beam
- A near detector located 280 m downstream of the target measures the unoscillated neutrino spectrum
- The neutrinos travel 295 km to the Super-Kamiokande water Cherenkov detector
 - v_e appearance (sensitive to $θ_{13}$ & δ_{CP})
 - v_{μ} disappearance (sensitive to θ_{23} & Δm^{2}_{32})

- Total delivered beam: 6.63x10²⁰ Protons on Target (POT)
- $v_{\mu} \rightarrow v_{e}$ analysis uses 96.3% of Run 1-4 data (through Apr 12, 2013)
- $v_{\mu} \rightarrow v_{e}$ analysis uses Run 1-3 data (3.01x10²⁰ POT)

T2K Beamline Muon Monitor Horn **Beam monitors** Si array + IC array Super-Conducting Ν Main Magnets intensity, position profile 3 Horns w/ 250kA to Super-K Beam Decay Volume 100 (m) 50 Near detector Target DecayVolume (at 280m from target) 30GeV MR Graphite, Φ26 x Helium cooling Beam Dump 900 mm long 110m length proton beam

Flux Prediction

- Proton beam monitoring
 - Profile on target from SEMs, OTR
 - Intensity from beam toroid
- Hadroproduction p measurements, notably CERN-NA61 thin carbon target data
 - Replica T2K "thick" target (1.9 λ_0) data in hand, and being analyzed
- Alignment of and current in horns
- The direction of the neutrino beam
 - 1 mrad change of v beam direction results in ~16 MeV change of the peak neutrino energy in the observed rate

Beam Stability

- Neutrino rate per POT stable to 0.7% over run period
- Recall: 1 mrad in beam direction is 16 MeV in peak E_v
- Dataset includes 0.21x 10²⁰ p.o.t. with 250→205kA horn operation (13% flux reduction at peak) in Run3

Flux and Uncertainties

A priori prediction of flux at Super-K has 10-15% uncertainties from 0.1 to 5 GeV

Off-axis near (ND280) and Far (Super-K) fluxes are not identical, but highly correlated

ND280: Off-axis Detectors

- Suite of tracking calorimeters and gas TPCs embedded in a 0.2T magnetic field
- Targets of both active polystyrene (CH) scintillator and passive water
- Muon, electron, proton and neutral and charged pion reconstruction capabilities

Charged-current single charged pion candidate

- Muon and pion identified by dE/dx in TPC gas
 - Momentum from
 - curvature in field 10

Near Detector Samples for Oscillation Analyses

- Off-axis near detectors constrains flux and cross-sections.
- Exclusive samples based on # of final state charged pions
- Muon selection: highest momentum negative track in TPC from FGD1 (scintillator) target
- Pion selection depends on detector

If pion tracked in TPC, ID by dE/dx in the TPC gas

Near Detector Samples for Oscillation Analyses

- Off-axis near detectors constrains flux and cross-sections.
- Exclusive samples based on # of final state charged pions
- Muon selection: highest momentum negative track in TPC from FGD1 (scintillator) target
- Pion selection depends on detector

- FGD-contained pions identified by dE/dx
- Reconstruction less efficient than TPC
- Tag at most 1 FGD pion

Near Detector Samples for Oscillation Analyses

- Off-axis near detectors constrains flux and cross-sections.
- Exclusive samples based on # of final state charged pions
- Muon selection: highest momentum negative track in TPC from FGD1 (scintillator) target
- Pion selection depends on detector

 Untracked pions may be tagged by Michel e⁻

ND280 Event Categories

• Charged current (CC) with 0π

CC 1π⁺

- CC Other ($\geq 1\pi^-$ or π^0 , or $\geq 1\pi^+$)
 - π^0 candidates have identified electrons in the TPC
- Disappearance analysis joins
 CC 1π⁺ and CC other together

Muon Momentum in ND280

Super-K (Far) Detector

- 50 kton (22.5 kton fiducial volume) water cerenkov detector
- ~11,000 20" PMT for inner detector (ID) (40% photo coverage)
- ~2,000 outward facing 8" PMT for outer detector (OD): veto cosmics, radioactivity, exiting events
- Good reconstruction for T2K energy range

Cerenkov light produces a ring detected by the PMTs

Particle Identification at SK

- Muon scattering is minimal
- Rings with sharp edges

- Electromagnetic shower
- Rings are "fuzzy"

- γ from π⁰ decays shower and look like electrons
- Multiple fuzzy rings

Improved Super-K Reconstruction Algorithm

- Each hit PMT gives charge and time information
- For a given event topology hypothesis, it is possible to produce a charge and time PDF for each PMT

- Based on MiniBooNE likelihood model (NIM A608, 206 (2009))

• Event hypotheses are distinguished by best-fit likelihoods, e.g., electron vs muon or π^0

Cerenkov light

Enhanced π^0 Rejection

- New reconstruction algorithm can use mass of the π⁰ hypothesis and best-fit likelihood ratio of e⁻ and π⁰
- Cut removes 70% more π⁰ background than previous[§] method for a 2% added loss of signal efficiency

[§] Previous approach (old reconstruction algorithm and old selection method) forced the reconstruction to find two rings and then formed a π^0 mass under the two-photon hypothesis

NEUTRINO OSCILLATION ANALYSIS TECHNIQUE

Inference for far detector

Our MC is based on the v flux and cross section predictions from external data and models. We further constrain those predictions by the near detector measurement.

Cross-section Model: CCQE

- Signal reaction for T2K energies
 - Elastic kinematics allow us to measure neutrino energy from muon
- T2K, like all practitioners in this business, is currently using a very simple model
 - Nucleon form factors from e⁻ scattering and vD₂ scattering
 - Model of nucleus is Fermi gas
- Problem: doesn't agree with data³
- Approach: add effective parameters (M_A, normalization) with uncertainties that span base model and data

MiniBooNE (*Phys. Rev.* **D81** 092005, 2010)

Beyond Fermi Gas for CCQE

- There are also better nuclear models than a Fermi Gas
- Spectral function models define probability to remove a nucleon with a given momentum and energy state
- Small distortion to elastic kinematics
- Currently, we take the difference dσ between this and a Fermi Gas model as a systematic uncertainty
 - Uses NuWro generator's implementation of spectral function
 - Significant in current analyses
- Will switch to spectral function in default models in the near future

O. Benhar et al, Nucl.Phys. A579 (1994) 493-517 Ankowski and Sobczyk, Phys.Rev. C74 (2006) 054316

Cross-section: Pion Production

- Single pion data from MiniBooNE has been the core reference for T2K backgrounds
 - $v_{\mu} N \rightarrow v_{\mu} \pi^{0} X$ as a background to $v_{\mu} \rightarrow v_{e}$ signal
 - $v_{\mu} N \rightarrow \mu^{-} \pi^{+} X$ as a background to $v_{\mu} \rightarrow v_{\mu}$ (energy misreconstruction)
- Again, current models do not describe data well
- Again, systematic uncertainties assigned to this span reference model and data as effect parameters

Cross-section: Final State Interactions

- Interactions of final state hadrons in nucleus can cause migration from signal to background type events
- Constrain with external pion-nucleus scattering data in a cascade model
- Uncertainties assigned to span the pion-nucleus scattering data

ND280 Constraint Inputs

Flux and Cross-Sections after ND280

Constraint

Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.22 ± 0.07
CCQE Norm.*	1.00 ± 0.11	0.96 ± 0.08
M _A ^{RES} (GeV)	1.41 ± 0.22	0.96 ± 0.06
CC1π Norm.**	1.15 ± 0.32	1.22 ± 0.16

*For E_v <1.5 GeV **For E_v <2.5 GeV

- ND280 constraint reduces both flux and cross-section model uncertainties individually
 - Note in particular reductions on the " M_A " parameters which set Q^2 shape of these events
- Flux and cross-section parameters are anti-correlated after these fits because the constraint is a rate at ND280

Inference for Far Detector after ND280 Constraint

	sin²2θ ₁₃ =0.1		sin²2θ ₁₃ =0.0	
	v _e Prediction (Events)	Error from Constrained Parameters	v _e Prediction (Ĕvents)	Error from Constrained Parameters
No ND280 Constraint	22.6	26.5%	5.3	22.0%
ND280 Constraint (2012, Runs 1-3, disappearance)	21.6	4.7%*	5.1	6.1%*
ND280 Constraint (Runs 1-4, appearance)	20.4	3.0%	4.6	4.9%

- Far detector uncertainties after ND280 constraint are smaller due to recent improvements (Run 1-3 → Runs 1-4)
 - Improved ND280 reconstruction and selections
 - Finer binning in p- θ

*Uncertainties reduced from previous T2K result due to new SK π^0 rejection algorithm $_{29}$

ND280 v_e Measurement

500

- Can check if pre-oscillation v_e component of beam is correctly predicted in ND280
- Interactions in FGD and particle ID in TPC
- Major background: photons from π^0 decays

Fit CCO π , CC1 π +other and γ sideband

Entries/(100 MeV/c)

DATA Signal - v

Bckg - γ Bckg - misid µ

Bckg - Other

Far Detector Reconstruction Systematic Uncertainties

- Evaluation of Super-K detector systematic uncertainties uses control samples from the data
 - Atmospheric v_e
 - Hybrid π^0 (electron from v_e CC and MC photon)
 - Cosmic ray muon samples
- Combine errors with Toy MC method

Oscillation Likelihood Fits

Systematic parameter constraint term. Systematic parameters may be naturally floated in fits.

L_{norm} is the probability to have N_{obs} when the predicted number of events is the Poisson distribution with mean

 $\begin{array}{l} L_{shape} \text{ is the product of the probabilities} \\ \text{that each event has } (p_i, \, \theta_i). \\ \phi: \text{ Predicted } p - \theta \text{ distribution (PDF)} \end{array}. \end{array}$

 $\nu_{\mu} \rightarrow \nu_{\mu} \text{ RESULTS}$

T2K collaboration, arXiV:1308.0465v1

Muon Spectrum

- Selected far detector v_{μ} CCQE candidates
 - Fully contained and fiducial single muon-like ring
 - p_{μ} >200 MeV, no more than one decay e⁻
 - 58 events in Run 1-3 data (3.01 x10²⁰ POT)

Neutrino Oscillation Parameters

- Fit method ۲
 - "sin²2 θ_{23} Δm_{32}^2 " space is scanned to find the best fit values which minimize the χ^2 .
 - 1st and the 2nd octants scanned separate
 - 3-flavor formulae used, but with some fixed parameters
- Systematic uncertainties ۲

 Systematic uncertainties 			
Systematic	before	after	
uncertainty	ND constraint		
Flux / v x-sec.	21.8 %	4.2 %	
Uncorrelated v x-sec.	6.3 %		
SK detector	10.1 %		
FSI-SI	3.5 %		
Total	25.1 %	13.1 %	

_			
_	Parameter	Value	
ely [–]	Δm_{21}^2	$7.50 \times 10^{-5} \mathrm{eV}^2$	
	$\sin^2 2\theta_{12}$	0.857	
<u> </u>	$\sin^2 2\theta_{13}$	0.098	
/	δ_{CP}	0	
	Mass hierarchy	Normal	
	Baseline length	$295 \mathrm{~km}$	
	Earth density	$2.6~{ m g/cm^3}$	
Events per bin	$\begin{array}{c} 3.5 \\ 3.5 \\ 2.5 \\ 1.5 \\ 1 \\ 0.5 \\ 0 \\ 0 \\ 1 \\ 2 \end{array}$	I syst. error 3 4 5 6 E_{reco} (G	
		35	

Results

Best fit w/ 68% C.L. error

$$\sin^2 \theta_{23} = 0.514 \pm 0.082, \ \left| \Delta m_{32}^2 \right| = 2.44^{+0.17}_{-0.15} \ \mathrm{eV}^2/\mathrm{c}^4$$

$\nu_{\mu} \rightarrow \nu_{e} \text{ RESULTS}$

T2K v_e Event Selection

v_e Selection Cuts

- # veto hits < 16
- Fid. Vol. = 200 cm
- # of rings = 1
- Ring is e-like
- E_{visible} > 100 MeV
- no Michel electrons
- new reconstruction algorithm π^0 cut

 $- 0 < E_{\nu} < 1250 \text{ MeV}$

Neutrino Oscillation Parameters

The analysis method is not changed from 2012 analysis.

- •Scan over $sin^2 2\theta_{13}$ space to find the maximum likelihood
- •Fix the neutrino oscillation parameters other than $\sin^2 2\theta_{13}$.

Infered number of events and systematic uncertainties

Infered # of events w/ 6.4×10²⁰ POT

Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
$v_e signal v_e background v_\mu background (mainly NC\pi^0 v_\mu + v_e background Total v_\mu$	0.38 3.17 0.89 0.20	16.42 2.93 0.89 0.19
	4.64	20.44
Total (w/ 2012 flux & cross section parameters)	5.15	21.77

Near detector constraint in 2013 inferes smaller number of events compared to 2012 anaysis.

Systematic uncertainties

Error source	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux + v int.	4.9 %	3.0 %
v int. (from other exp.)	6.7 %	7.5 %
Far detector	7.3 %	3.5 %
Total	11.1 %	8.8 %
Total (2012)	13.0 %	9.9 %

Errors are reduced from 2012 mainly due to near detector analysis improvement.

Results

Allowed region of $sin^2 2\theta_{13}$ for each value of δ_{CP}

Best fit w/ 68% C.L. error @ $\delta_{CP}=0$ **normal hierarchy:** $\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$ **inverted hierarchy:** $\sin^2 2\theta_{13} = 0.182^{+0.046}_{-0.040}$

> $\sqrt{(2\Delta \ln L)}$ significance of non-zero θ_{13} yields 7.5 σ

NOTE: These are 1D contours for values of δ_{CP} , not 2D contours in $~\delta_{CP}\text{-}\theta_{13}$ space

$δ_{CP}$ vs. sin²2θ₁₃ for θ₂₃≠π/4

 δ_{CP} vs. sin²2 θ_{13} contour depends significantly on the value of sin² θ_{23} .

Pink band represents PDG2012 reactor average value of $sin^22\theta_{13} = (0.098 \pm 0.013)$

NOTE: These are 1D contours for values of δ_{CP} , not 2D contours in $\,\delta_{CP}^{}-\theta_{13}^{}$ space

CONCLUSIONS AND FUTURE PROSPECTS

T2K and J-PARC Run Plans

- T2K's neutrino oscillation analyses still statistics limited
 So far, we have been able to steadily decrease systematics
- T2K will continue to run and benefit from planned J-PARC Main Ring (MR) power improvements
 - 220 kW operation in CY2013. Integrated 6.7E20 POT to date.
 - Linac upgrade to be completed with a year. Expect range of steady MR operation for neutrino between 200-400 kW
 - Planned MR upgrade (depends on funding). Up to 750 kW
 - Possible scenario:
 - Doubling the # of proton per bunch
 - Doubling repetition rate
- T2K beamline designed to easily switch from neutrino to anti-neutrino beams
 - T2K has made no firm plans for anti-neutrino running

Conclusions

- We have measured non-zero θ_{13} with 7σ significance by observation of $v_{\mu} \rightarrow v_{e}$
- Also measurement of $v_{\mu} \rightarrow v_{\mu}$ which favors maximal mixing

A doubling of statistics soon with Run 4 data

 Accelerator based neutrino oscillation research at "atmospheric" baseline are now precision measurements