AXEL
high pressure xenon gas TPC
for neutrinoless double beta decay search

Kiseki Nakamura | Kyoto Univ.
For the AXEL group

1. AXEL project
2. Fundamental studies
3. Prototype detector
4. Future prospect
5. Summary
1. AXEL project
2. Fundamental studies
3. Prototype detector
4. Future prospect
5. Summary
AXEL experiment

- High pressure xenon gas TPC for $0\nu\beta\beta$ search
 - High energy resolution: **0.5% (FWHM) @2.5MeV**
 - gaseous xenon + electroluminescence
 - Large mass: **1ton (φ3×2.5m, 10atm)**
 - BG discrimination: **pixel readout** (15mm pitch)

- Similar idea as NEXT experiment
- We introduce a new idea for signal readout (ELCC)
EL readout idea: **ELCC**

ELCC
- In the cell hole, electrons are collected and accelerated, then electroluminescence photons are generated.
- Photons are detected by MPPC(SiPM) in each cell.

Merit of ELCC
- Uniform response in wide area.
- Rigid structure (--> large size).

![Diagram of ELCC setup]
- Anode electrode
- PTFE insulator w/ holes(\(\phi 4\text{mm}\))
- Mesh electrode
- MPPC photon detector array
What we want to observe

• 0νββ signal
 • energy: integrated FADC
 • track: waveforms (pixel readout TPC)

10atm
Xe100%
15mm pitch
1μs sampling (~1mm)
Tracking strategy

- energy resolution 0.5% --> reject non-2.5MeV
- tracking --> reject α, γ (98%: compton)

10atm, Xe100%, 15mm pitch, 1μs sampling (~1mm)
1. AXEL project
2. Fundamental studies
3. Prototype detector
4. Future prospect
5. Summary
Electric field simulation (FEMM)

- Line of electric field are collected
- Uniformity of EL yield is 0.47% (sigma)

\[\frac{dN_{ph}}{dx} = 70(E/p - 1.0)p \]
MPPC linearity

- Check large and long pulse photon response (~$10^5/5\mu s$)
- Saturation was observed
 - “simultaneous hit” and “decrease of bias voltage”
- After correction, expected residual fluctuation is 0.11%

\[N_{obs} = \frac{p_0N_{pmt}}{1 + k\tau + Gp_0N_{pmt}} \]
1. AXEL project
2. Fundamental studies
3. **Prototype detector**
4. Future prospect
5. Summary
Overall view

- Kyoto Univ. 3F (welcome!)

<table>
<thead>
<tr>
<th>Name</th>
<th>filter class</th>
<th>filter num</th>
<th>filter flow</th>
<th>overall flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL25 [Matsusada]</td>
<td>10000</td>
<td>4</td>
<td>7 m³/min</td>
<td>64 times/h</td>
</tr>
</tbody>
</table>
Prototype detector

• Detection volume
 • 6*6*6cm³
 • 5.7g (4atm Xe)

• Sensor
 • WLS coated MPPC x64
 • VUV-PMT x2

• Electric field
 • EL: 2.4kV/cm/atm
 • drift: 50V/cm/atm
Event sample

- waveforms of MPPC and PMT
 - EL light & scintillation light are observed

MPPC: 65MHz 12bit 2Vpp

PMT: 100MHz 14bit 2Vpp
γ-ray measurement (57Co 122keV)

- Fiducial cut
 - veto region: outer 28 MPPCs
γ-ray measurement (57Co 122keV)

- Time dependence correction
- Impurities decrease EL gain
- Gas circulation system is now under construction
γ-ray measurement (\(^{57}\text{Co} 122\text{keV}\))

- EL-gain correction
 - Photon num of 30keV γ-ray for “each cell”
 - One MPPC(red) selection is too strict, so blue MPPCs are allowed
 - EL crosstalk suppression structure is under designing

\[\sigma = 0.065 \quad \text{vs} \quad \sigma = 0.016 \]
γ-ray measurement (^{57}Co 122keV)

- Hit volume correction
 - strong correlation was obtained
 - (recombination is seen ?)
Energy resolution

- Four peaks are observed
- FWHMs are evaluated by Gaussian fitting

<table>
<thead>
<tr>
<th></th>
<th>Kα</th>
<th>Kβ</th>
<th>escape</th>
<th>full</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy</td>
<td>29.8keV</td>
<td>33.6keV</td>
<td>92.3keV</td>
<td>122keV</td>
</tr>
<tr>
<td>photon #</td>
<td>6605</td>
<td>7516</td>
<td>18711</td>
<td>24710</td>
</tr>
<tr>
<td>FWHM</td>
<td>7.9%</td>
<td>8.7%</td>
<td>5.6%</td>
<td>4.7%</td>
</tr>
</tbody>
</table>
Energy resolution estimation at Q

- Estimated resolution is 1~3.6% (FWHM) @ 2.5 MeV
 - Several factors for the target

- We plan to improve energy resolution by
 - VUV-MPPC
 - Gas circulation
 - Crosstalk suppress
 - Etc...

- We also plan to make a larger detector
Upgrades

- Long field cage
 - For 511keV γ-ray
- New VUV-sensitive MPPCs
 - instead of WLS-painted MPPC
 - operation test with 57Co seems OK
- Gas circulation
 - pump (last component) is now vacuum test
- EL crosstalk suppression
 - designing
Our goal is

- $0\nu\beta\beta$ discovery !!!
 - or exclude inverted hierarchy

- Expected event rate
 - 0.5 count/year/ton ($m_{\beta\beta}=10\text{meV}$)
 - We need ton scale detector
 - BG rate requirement in ROI $< \sim 1$ count/year

<table>
<thead>
<tr>
<th>volume</th>
<th>mass</th>
<th>MPPC #</th>
<th>purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>0.216L</td>
<td>~10g</td>
<td>64 ELCC test (122keV, 511keV)</td>
</tr>
<tr>
<td>next (2016~2017)</td>
<td>~200L</td>
<td>~10kg</td>
<td>~2000 2.5MeV demonstration enriched ^{136}Xe</td>
</tr>
<tr>
<td>next2 (2018~)</td>
<td>~2000L</td>
<td>~1ton</td>
<td>~31000 $0\nu\beta\beta$ search</td>
</tr>
<tr>
<td>future (202X~)</td>
<td>~18000L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next prototype detector

- **Purpose**
 - energy resolution @ 2.5MeV (Q value)
 - establish large size technique
 - tracking ability
 - BG observation

- **Status**
 - readout board --> Tanaka’s poster
 - structure: designing with Geant4
 - clean room: constructed large size
 - gas system: considering safety devices
 - etc...
Most serious BG for AXEL

• γ-ray from 214Bi is our enemy
• chamber mass : 25 ton
• expected BG is 1000 cts/year

\[R_{BG} = M \times C \times \frac{N_A}{M_{238U}} \times \frac{\ln 2}{T_{1/2}^{238U}} \times \Omega \times B \times R = \sim 1000 \text{ counts/year} \]

- Mass $\sim 25 \times 10^6$ g
- Contamination 2.9×10^{-12} g/g
- Avogadro # 6.02×10^{23}
- solid angle ~ 0.1
- branching ratio 0.0157
- photoab. ratio 0.02

atomic weight 228

half life 4.468×10^9
• Geant4 + diffusion
• Two blobs detected
• 1/10 reduction will be expected
 • (still remain 100 cts)

<table>
<thead>
<tr>
<th>Signal Efficiency [%] (with BG 10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 atm Xe25%+He75%</td>
</tr>
<tr>
<td>84.6 75.8 73.0 71.0</td>
</tr>
<tr>
<td>30 atm Xe50%+He50%</td>
</tr>
<tr>
<td>80.5 77.4 73.9 67.1</td>
</tr>
<tr>
<td>30 atm Xe75%+He25%</td>
</tr>
<tr>
<td>77.6 73.2 69.2 59.5</td>
</tr>
<tr>
<td>30 atm Xe100%</td>
</tr>
<tr>
<td>64.7 60.5 51.4 36.7</td>
</tr>
</tbody>
</table>

particle.root (entry=0)
/home/axel/AKEL_anal/Geant4/NP5000L/03.2/Onlab_gas_30atmXe100_1e3 axel@hanaro 2015/10/08 11:42:01
G4evt=0, seed=1=5675, seed2=54321
nRuns=3000, nparticles=2, ele_num_totals=103236
E=374.6 x=(686.6,174.2,1123.3) y=(0.110,0.638,0.771)
E=2004.1 x=(686.6,174.2,1123.3) y=(0.110,0.638,0.771)
W=22.1eV, fan=1.03
diffusion: L=0.0195302, T=0.0654811 cm/cm*0.5
attachment=0.00
path_length=120.4mm
blob: r=10mm, n=100
left: 209, 230, 235, 237 ... 464, 500, 503, 645, 477 right
subcluster: 6, 9, 0, 0, 0 keV

2.5 5 7.5 10 [mm]
Pressurized water shield

• Concept
 • Similar structure to KamLAND-Zen
 • Thickness : 37.3mm \(\rightarrow\) 3mm (ex. EXO achieved 1.37mm)
 • or thinner thickness like balloon
 • BG will be 10 counts/year

• Plan
 • pressure test for various materials
 • construct small system
Summary

• AXEL project
 • $0\nu\beta\beta$ search using high pressure xenon gas TPC with high energy resolution, large mass and tracking ability
 • New readout idea: ELCC (electric field simulation is OK)
 • Linearity for $1e5/5\mu s$: correction fluctuation is 0.12% (OK)

• Prototype detector
 • Energy resolution: 1~3.6%(FWHM) at Q (many improvements are ongoing)
 • Long size + VUV-MPPC result will come soon (511keV)

• Future prospects
 • We started making large size detector --> Tanaka’s poster
 • γ-ray BG from 214Bi in the chamber (heaviest component) will be reduced by tracking and water shield: 1000->100->10