AXEL
A Xenon ElectroLuminescence detector for high-energy-resolution $0\nu\beta\beta$ search

Kiseki Nakamura | Kyoto Univ.
High pressure Xe gas TPC for $0\nu\beta\beta$ search

- High energy resolution: 0.5% (FWHM) @2.48MeV
- Large mass: 1 ton ($\phi 2 \times 1.7 m$, 30 atm)
- BG discrimination: pixel readout (7.5mm pitch)

(DirectionaDM search)
High energy resolution

Ionization process
- W-value = 22.1eV
- Fano-factor = 0.13
- => 0.25%(FWHM) @2.5MeV
- proven by Xe gas

Multiple process
- Use ElectroLuminescence (EL)
- proportional to the electric field
- amplification fluctuation is small

![Energy resolution graph](image)

- $E_\gamma = 662$ keV
- 100 atm
- NIMA396 (1997) 360
Conventional EL readout (NEXT)

- energy @ opposite PMT
- tracking @ SiPM
- position dependence
- deflection of mesh

New EL readout (ELCC @AXEL)

- energy & tracking @ ELCC
- no position dependence
- no deflection of mesh
- robust structure
- need performance check
Electroluminescence

Produced photons (N_{ph})
- proportional to E/p
- threshold process
- $dN_{ph}/dx = 70(E/p - 1.0)p$
 (UV photons/e cm drift)

Detected photons (Gain)
- $\text{Gain} = N_{ph} \times \text{eff}_{\text{collect}} \times \text{PDE}$
- Gain=100 (30atm) is enough to keep high energy resolution

<table>
<thead>
<tr>
<th>E [kV/cm]</th>
<th>P [atm]</th>
<th>eff$_{\text{collect}}$ [%]</th>
<th>PDE [%]</th>
<th>Gain</th>
<th>E$_{\text{res}}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>1</td>
<td>12.9</td>
<td>30</td>
<td>3</td>
<td>0.47</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>12.9</td>
<td>30</td>
<td>30</td>
<td>0.28</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>12.9</td>
<td>30</td>
<td>96</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*only Gain effect is considered
EL demonstration by UV-PMT

Setup
- 1 atm Xe
- UV-PMT (H3178-51Q)
- detection size: 28x28x55mm

energy resolution (FWHM)
- 13.8% @30keV (fit right edge)
- 1.5% @2.5MeV (converted)

Escape peak
- 29.8keV

241Am
- 59.5keV
Prototype detector: outside

- Gas system (we need pump with high pressure for gas circulation)
- Chamber 10L, <10atm
- Temperature controller
- Electronics
Prototype detector: inside

- Wire w/o soldering
- 32ch MPPC
- Wave length shifter
- Anode holes
- PTFE
- MPPC drift top
- Anode holes 1.6kV
- GND mesh
- Drift top 2kV
- 7.5mm
Data acquisition

- record waveform (32ch)
- 65MHz 12bit 2Vpp
Tracking demonstration (α-ray)

- Detect EL light
 - OK!
- Track width is too large?
 - large Diff$_{tra}$ --> High Pressure
 - blurred at WLS --> UV-MPPC

\[
\begin{align*}
\text{gas: } & \text{ Xe 1atm} \\
E_{\text{anode}} &= 1.6kV/0.5cm \\
E_{\text{drift}} &= 0.4kV/6cm \\
\text{Diff}_{tra} &= 0.34cm/\sqrt{\text{cm}}
\end{align*}
\]
- Detect γ-ray
 - OK!
- Bad energy resolution
 - WLS efficiency is small (< 0.5) and not uniformity
 - small size (32ch) and low pressure (1atm) ---> w/o fid-cut
 - ---> need UV-MPPC, large size (64ch), high pressure

gas : Xe 1atm
$E_{anode}=1.6kV/6cm$
$E_{drift}=0.4kV/0.5cm$

57Co
122keV

![Graph showing photon count]
Plan of prototype detector

- Goals
 - Measure energy resolution using 662keV gamma-ray
 - Measure rejection power of α-ray by tracking

- Plan

<table>
<thead>
<tr>
<th></th>
<th>num</th>
<th>type</th>
<th>pressure</th>
<th>γ source</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>32ch</td>
<td>visible</td>
<td>1atm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015/03</td>
<td>64ch</td>
<td>visible</td>
<td>1atm</td>
<td>241Am(60keV)</td>
<td>put UV-PMT to get z pos.</td>
</tr>
<tr>
<td>2015/04</td>
<td>64ch</td>
<td>UV</td>
<td>1atm</td>
<td>241Am(60keV)</td>
<td></td>
</tr>
<tr>
<td>2015/05</td>
<td>64ch</td>
<td>UV</td>
<td>3atm</td>
<td>57Co(122keV)</td>
<td></td>
</tr>
<tr>
<td>2015/06</td>
<td>64ch</td>
<td>UV</td>
<td>10atm</td>
<td>137Cs(662keV)</td>
<td></td>
</tr>
</tbody>
</table>

UV-MPPC (3rd gen.) will be marketed from FY2015.
- low Cross talk (new)
- low after pulse (already done)
- PDE@178nm: 20~30%
Motivation

• Linearity is very important to obtain high energy resolution.
• Many photons (~10^5) may come in long time (~5μsec).

Experiment

• Linearity would depend on pixel size and recovery time.
• MPPC is studied by comparing PMT.
Motivation

- PDE is very important basic performance.
- There is no result of PDE in high pressure Xe gas.

Experiment

- Mini chamber filled with high pressure Xe gas.
- UV-MPPC detect scintillation from α (UV-PMT as a reference)
We start to think about background
Signal estimation

- Physics goal
 - $0\nu\beta\beta$ discovery!
 - or exclude inverted hierarchy

- Expected event rate
 - 0.5 count/year/ton ($m_{\beta\beta} = 10\text{ meV}$)
 - We need several tons of ^{136}Xe...

- BG rate requirement in ROI < ~ 1 count/year
Comparison of $0\nu\beta\beta$, e, and α

- Event topology by tracking
 - α BG is well rejected
 - γ BG with 2.5MeV photoelectric absorption is difficult to reject perfectly.
 - (multi site events such as Compton scattering can be rejected)
γ-ray BG around the ROI

- Energy resolution of 0.5%
 - γ-ray from 208Tl can be rejected
 - γ-ray from 214Bi interacting photoelectric absorption can be serious BG
Rate of $^{214}\text{Bi} \gamma$-ray

- Attenuation length of 2.5MeV γ-ray
 - 140cm in 30atm Xe -> self shielding is not effective
 - 20cm in water -> external BG stop by water shield

- Materials of detector must be checked
 - Vessel is the most heavy component (10ton : copper)
 - EXO uses clean copper for vessel : U < 5ppt 95% U.L.

$$R_{BG} = M \times C \times \frac{N_A}{M_{238U}} \times \frac{\ln 2}{T_{1/2}^{238U}} \times \Omega \times B \times R = 643 \text{ counts/year}$$

- Mass $\sim 10 \times 10^6$ g
- Contamination 5×10^{-12} g/g
- Avogadro # 6.02×10^{23}
- Solid angle ~ 0.1
- Branching ratio 0.0157
- Photoab. ratio 0.02

- Atomic weight 228
- Half life 4.468×10^9
How to deal with ^{214}Bi?

- Improve energy resolution
 - Energy difference between 0νββ and γ from ^{214}Bi is 0.44%
 - Intrinsic energy resolution is 0.25%
- Put some shield “in” the vessel
 - Pressure vessel become huge
- Make clean vessel
 - Purifying copper
- Make light vessel
 - Titanium is strong and light (NEXT group’s approach)
 - Need 2 ton --> still need purification
- --> We noticed rejection of high energy γ is not so easy
Pressurized water shield

• Merit
 • Greatly reduce the mass inside the water shield (~30kg)
 • Clean (<0.1ppt U, ILIAS UKDM)
 • Work as active veto (need PMT for high pressure)
 • Liquid is easy high pressure (in addition, it’s safe)
 • Cheap

• Next to do
 • check MPPC (10^5 ~100kg) BG
 • Geant4 simulation
Summary

• AXEL experiment
 • high pressure Xe gas TPC for 0νββ search
 • aim to search $m_{\beta\beta} = 10\text{meV}$

• R & D
 • prototype detector for demonstration
 • check MPPC linearity
 • performance of UV-MPPC in high pressure Xe gas

• We start to think about BG
 • ^{214}Bi is our enemy
 • pressurized water shield seems to be good