KOTO実験のための KL生成数測定実験の準備状況

京都大 KEK^A <u>塩見公志</u> 笹尾登 野村正^A 南條創 森井秀樹 臼杵亨 河崎直樹 増田孝彦 前田陽祐 内藤大地 2009/03/27 物理学会@立教大学

$(KL \rightarrow \pi^0 \nu \nu 探索実験)$

KOTO実験

*	$KL \rightarrow \pi^0 \nu \nu$ 崩壊				
	 * CPを破る、理論的不定性の小さいモード * SMの精密検証、NPの探索 		КОТО	E391a (Run2)	
	* Br(K _L $\rightarrow \pi^{0} \nu \nu$)<6.7x10 ⁻⁸ * E391a Run2 result	Proton energy	30GeV	12GeV	
	 (SM Br=2.8x10⁻¹¹) KOTO実験(2011年開始) * J-PARC 大強度陽子ビーム * long Run(3 s.m years) * E391a検出器の改良 3桁高い感度で実験を行い 世界初のシグナル事象の発見へ 	Proton intensity	2×10 ¹⁴	2.5×10 ¹²	
		spill/cycle	0.7/3.3sec	2/4sec	
		KL yield/spill	7.8×10 ⁶	3.3×10 ⁵	x30/sec
		Run Time	3s.m years =12 months	1 month	x10
		Decay Prob.	4%	2%	x2
		Acceptance	3.6%*	0.67%	x5

Neutral KL beam line

Beam Survey 2009

- Step0 Profile of beam core
 - * Collimatorのalignmentの確認
- Step1 KL yield measurement
 - * Fix number of KL → 最重要項目
 - * Simulation packageにより最大factor 3の違い
- Step2 Measure core neutron
 - * n/K ratioの確認
- Step3 Measure halo neutron
 - * halo-n/K ratioの確認

	K_L Yield per POT
GEANT3	$(3.8 \pm 0.1) \times 10^{-8}$
GEANT4(QGSP)	$(2.3 \pm 0.1) \times 10^{-8}$
GEANT4(QBBC)	$(2.7 \pm 0.3) \times 10^{-8}$
FLUKA	$(8.3 \pm 0.2) \times 10^{-8}$

KL生成数測定実験

(測定原理)

- * KL→π+π-π⁰ (→2γ)崩壊
 * Tracker(Scintillator)
 * π[±]の方向をトラッキング
 →崩壊位置(Z_{vtx})を求める
 * Mini Calorimeter(pure Csl)
 - * 2 γ 線の位置とエネルギーを測定
 → Z_{vtx}から4元運動量を求める
 - * "pencil beam"
 - * KLのPtは非常に小さい
 - * x,y方向の運動量バランスから
 π[±]の運動量を求められる
 - * KLの同定
 - * M_{2γ}=M_{π0}, M_{π+π-π0}=M_{KL}

$$p_x^+ + p_x^- + k_{1x} + k_{2x} = 0$$

$$p_y^+ + p_y^- + k_{1y} + k_{2y} = 0$$

(k₁,k₂γ線の運動量, p⁺,p⁻ π[±]の運動量)

Simpleでrobustな方法

Expected performance

Reconstructed KL mass

* KL momentum resolution
 {P(Rec)-P(True)}/P(True)

運動量分解能は13%を達成

Expected performance

* Irigger					1% of FULL INTENSIT		
* 各バンクに1hit以上						Source	Rate (Hz
	* Er th		$KL \rightarrow \pi^+ \pi^- \pi^0$ 2.3				
	t Event/		KL→πev	0.8			
	* Event/	day		KL→πμν	0.2		
		Coom	Cood	1/1 maga		$KL \rightarrow \pi^0 \pi^0 \pi^0$	0.2
		Geom	Good	Cut		Core n	
100		4500			He bag	0.25	
	$KL \rightarrow \pi^{*}\pi^{-}\pi^{0}$	π ⁺ π ⁻ π ⁰ ~1500 ~1250 ~500		Air(*)	2.9		
	$KL \rightarrow \pi^0 \pi^0 \pi^0$	16	4	N/A		(*) Among 100 triggers,	

no events left after all cuts

5% stat. errorであり、十分な精度を達成

KL生成数測定実験

- * Tracker
 - Scinti+WLS
 - 5mmx10mmx400(600)mm
 - total 400ch
 - * 読み出し方法
 - MAPMT(64ch)+Frontend borad(FB)+VME module
 - * FBにはVA/TA chipが搭載
 - * 64chのcharge情報をシリアル化
 - * 32ch-orの2つのtimingシグナル
 - * K2K実験、SciBooNE実験で使用された物を再利用
- Mini calorimeter
 - pure Csl(7cmx7cmx30cm)
 - * 25x2 block →E391a実験で使用したものを再利用
 - * 読み出し方法
 - * PMT+Amp/Discri+ADC →E391a実験で使用したものを再利用

Scintillatorの選定

- * EJ230(ELJEN Technology)
 - * 紫外発光
- * B2(クラレ)
 - * 吸収波長 紫外
 - * 発光波長 青
- * 光量測定
 - * trigger1とtrigger2によるコインシデンス
 - * 13p.e/5mm@20cm from PMT

まとめ

* KOTO実験

- * KL $\rightarrow \pi^{0} \nu \nu$ 探索実験
- * 世界初のシグナル事象の発見
- * 現在beam line作成に向けたfabricationが進められている
 * 2009年秋完成予定
- 2009 beam survey
 - * KL生成数測定が最重要課題
 - * KL→π+π-π⁰崩壊をタグ
 - * Simpleでrobustな方法
 - Scintillator hodo scope + Mini calorimeter
 - * 運動量分解能 13% 収量 500event/day
 - * Tracker用Scintillatorの選定
 - * EJ230(ELJEN Technology)+B2(クラレ)
 - * 光量 13p.e./5mm

* 6、7月にビームテストを 東北大核理研で予定

* 6月

* 7月

- * ホドスコープの性能測定
- * ホドスコープ+Mini Calの性能測定
- * 10月、beam survey実験
 - KLの生成数を確定

Further consideration (I)

What is a tail in higher mass region?
 → Events with a certain geometry make a tail

When π^+/π^- go back-to-back in the transverse plane and π^0 happens to get P_T in other direction (due to resolution or assumption of $K_L P_T=0$), resultant $P\pi^+/P\pi^-$ become large to compensate fake $\pi^0 P_T$

6 March 2009

Single count rate

Scibar DAQ(VA/TA)

- slow shaper
 - ~1.2µs
- fast shaper
 - ~100ns
- VA Outm,Outp
 - アナログ差動出力(current)
 - DAQ boardとの間で ノイズがのりやすい
- TA ta,tb
 - トリガー出力(current)
 - 32chのor出力
- trigger mode
 - Hold_enable mode
 - extra trigger mode

Hold time 1.2μ s

Scibar DAQ (DAQ board)

- A/D converter
 - FADC
- FADC range(2.5-5V,11bit)
- sampling clock 1MHz

multiplicity

- Kaon decay
 - 5000Hz
- Core neutron
 - 1500Hz
- time window
 - lus
 ->scibarのshaping time
- full intensity時の accidental hitがおこる確率
 - lusx6500x100=0.65
 - 20%のシグナルロス

Core neutron