

K^oTO実験における 荷電粒子検出器(Charged Veto) の開発

京大理、KEK^A 内藤大地、笹尾登、野村正^A、南條創、森井秀樹 塩見公志、河崎直樹、増田孝彦、前田陽祐、高橋剛 他 K^oTO Collaboration

CONTENTS

- K^oTO実験の概要
- Charged Vetoの概要
- ・プロトタイプCVの性能評価

67:

-K^oTO実験の概要-

- ・ $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 稀崩壊探索実験
- ・実験目的
 - ・小林益川理論(CKM)の精密検証

- ・CKMでのCPの破れがnに比例(CKM行列の複素パラメータ)
- Br(K_L $\rightarrow \pi^0 \nu \nu) \propto \eta^2$
- ・ハドロン相互作用による理論的不定性が小さい
- ・新物理の探索
- ・KEK PSで行われたE391a実験のアップグレード実験
- ・J-PARC 大強度陽子シンクロトロン を用いて2011開始
- ・Br≒2.5x10-11,反応に関わる粒子が中性粒子
 - →実験的困難

-K^oTO実験の概要-

- ・ $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 稀崩壊探索実験
- ・実験目的
 - ・小林益川理論(CKM)の精密検証

- 崩壊のダイアグラム
- ・CKMでのCPの破れがnに比例(CKM行列の複素パラメータ)
- Br(K_L $\rightarrow \pi^0 \nu \nu) \propto \eta^2$
- ・ハドロン相互作用による理論的不定性が小さい

・辛をうう

- 世界発の崩壊事象発見を目指す。
- ・J-PARC 大強度陽子シンクロトロン を用いて2011開始
- ・Br≒2.5x10-11,反応に関わる粒子が中性粒子
 - →実験的困難

K^oTO実験の概要 ~実験原理~

- ・ K_L $\rightarrow \pi^0 \nu \overline{\nu}$ のうち π^0 は生成した瞬間2 γ に崩壊する →終状態は2 γ 以外何も無い状態
 - γはCslカロリメータで位置とエネルギーを測定
 - $\rightarrow \pi^{0}$ の崩壊位置と横方向運動量を再構成してsignal判定
 - ・崩壊領域を全立体角Vetoで覆う $\rightarrow \pi^{0}$ 以外の粒子が存在しないことを保証

2010/3/21 JPS@Okayama University 21aBE13 4

16 T:

Charged Vetoの概要

- ・位置と役割
- ・CVへの要請
- ・CVデザイン

Charged Vetoの位置と役割

・役割は荷電粒子を検出し、荷電粒子を含むKL崩壊のveto
 KL→π⁺π⁻π⁰、KL→π⁻e⁺ν...

<u>К.</u>

CVへの要請

- ・バックグラウンド(K_L $\rightarrow \pi^+\pi^-\pi^0$)削減の観点
 - ・π⁻をinefficiency(10⁻⁴以下)でvetoしたい →100keV閾値が必要 検出不可
 - ・photon statisticsを考慮
 →3p.e./100keVの光量が必要

6

• accidental loss(ビーム中粒子による)の観点
 →3ns以下の時間分解能が必要

CVデザイン

ю. Г.:

MPPC

MPPC

プロトタイプCVの 性能評価試験

- ・実験目的
- ・実験セットアップ
- ・実験結果

- ・CVの中で一番大きいシンチレータストリップの性能評価
 - →光量が一番落ちる場所があるのがこの部分

・時間分解能3ns以下、光量3p.e./100keV以上が出るか check

2010/3/21 JPS@Okayama University 21aBE13 11

67

実験セットアップ]

プロトタイプCVの概念図

2010/3/21 JPS@Okayama University 21aBE13 12

61

実験セットアップ2

・東北大学電子光理学研究センターの600MeV/cの陽電子 ビームを使用

験セットアップ3

- ・タイミングカウンター:4cmx4cmx1cmシンチ
- トリガーT1、T2:1cmx1cmx5mmシンチ
- ・トリガーT3、T4:5cmx5cmx5mmシンチ

2010/3/21 JPS@Okayama University 21aBE13 14

61

実験セットアップ4

- ・6つのトリガーのcoincidence
- ・TDCで時間情報、電荷有感型ADCで出力電荷を測定

2010/3/21 JPS@Okayama University 21aBE13 15

67:

治果~光量測定~

実験結果~時間分解能測定~

- ・tdcはtq補正を加える
- ・両読みの平均時間を使って時間分解能を評価

平均時間@x=50cm,Y=0

2010/3/21 JPS@Okayama University 21aBE13 17

61:

まとめ

・プロトタイプCVの性能評価

	要求性能		測定値	
光量	3p.e./100keV		3.7p.e./100keV	
時間分解能	3ns以下		0.8ns	
accidental loss		2.7%		
darkcount l	arkcount loss		negligible	

2010/3/21 JPS@Okayama University 21aBE13 18

S

16 T ...

まとめ

・プロトタイプCVの性能評価

	要求性能		測定値	
光量	3p.e./100keV		3.7p.e./100keV	
時間分解能	3ns以下		0.8ns	
accidental loss		2.7%		
darkcount l	OSS	neg	gligible	

このデザインで

- π⁻に対するinefficiency10⁻⁴レベルを保証
- signalのlossが少ないことを保証

61:

・2010年11月

- ・CVプロトタイプインストール
- ・エンジニアリングRun
- ・2011年秋
 - ・CVフルインストール
 - ・物理Run開始

ばっくあっぷ

CVが2層の理由1

閾値2GeV/c

閾値0.8GeV/c ・ ここがCV- η のバックグラウンド源 →inner CVを排除して2層に ・ シンチレータを薄くして反応を抑える 6mm→3mm ・ CVをCslに近づける

CVが2層の理由2

K_L→π⁻e⁺νバックグラウンドのメカニズム

 ・CVを近づけすぎると左の バックグラウンドが増加
 →front CVの位置をCsI上流25 cmに決定

タイミングカウンタ

MPPC冷却温度~左側~

7.6°C

<u>к</u>

MPPC冷却温度~右側~

5.6°C

<u>к</u>

MPPCのダークカウントノイズによるロス

$$P_1 = N_d(n) \times T_w$$
$$P_2 = N_d(n) \times T_f$$

timing window 内に ダークカウントノイズが入る確率 ファイバーの両端のMPPCで ダークカウントノイズがcoincidenceする確率 P3=P1xP2

61:

$$loss = 1 - (1 - P_3)^{\frac{N_{CV}}{2}}$$
$$\simeq \{ (N_d(n) \times T_w) \times (N_d(n) \times T_f) \} \times \frac{N_{CV}}{2}$$

Nd(n):n photo electron 閾値でのダークカウントノイズ Tw:timing windowの幅 Tf:ファイバー2.5mを光が進む時間x2 Ncv:CVの全チャンネル数

ビームテスト時のダークカウントノイズ

threshold vs darkcount noise

ダークカウントノイズによるロス

K

アンプ回路図

オフセット回路の計算

ビームテスト~セットアップ5~

- ・湿度モニター
 - ・MPPCをペルチェ素子で冷却
 - →結露が問題
 - →MPPCの周りに乾燥空気を流し込む(湿度20%以下) →湿度モニターが必要
- ・gainモニター用LED
 - MPPCは電圧が同じでも温度によってgainが変わる
 →gainのモニターが必要

61:

	Kinematic cut & Veto	Cluster shape cut	accidental loss
$K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$	2.44	2.05	1.41
$K_L^0 \rightarrow 2\pi^0$	3.00	1.08	0.75
$K_L^0 \rightarrow \pi^+ \pi^- \pi^0$	0.25	0.22	0.15
$K_L^0 \rightarrow \pi^- e^+ \nu$	1.45	0.08	0.06
$CV-\eta$	0.58	0.1	0.07
$CV-\pi^0$	6.8	0.23	0.16
$CC02-\pi^{0}[23]$	0.33	-	-

プロトタイプCVで明らかになった問題 ・シンチレータは溶剤をガラスの型に流し込み加熱硬化させる →シンチレータが大きいと型が歪んで厚みが不均一になる。 今回は出来るだけ厚みが均一なものを選んで加工して もらった。

実験結果~光量測定1~

実験結果~光量測定2~

実験結果~光量測定3~

