Search for the decay $K_{L} \rightarrow \pi^{0} v \bar{V}$ at KEK-PS E391a experiment

Toshi SUMIDA
(Kyoto University)
Mar. 26th 2008
JPS 63rd Annual Meeting

Outline

- Theoretical motivation
- The E391a experiment - Method
- Detector
- Data analysis
- KL flux
- Backgrounds
- Results

The $K_{L} \rightarrow \pi^{0} v \bar{V}$ decay

- "Direct" CP violation process
- Measurement of the parameter η in CKM

$$
\begin{aligned}
V & =\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
\end{aligned}
$$

- Amplitude

$$
\begin{aligned}
-A\left(K_{L} \rightarrow \pi^{0} V \bar{V}\right) & \propto A\left(K^{0} \rightarrow \pi^{0} V \bar{V}\right)-A\left(\bar{K}^{0} \rightarrow \pi^{0} V \bar{V}\right) \\
& \propto V_{t d}^{*} V_{t s}-V_{t s}^{*} V_{t d} \\
& =2 \times V_{t s} \times \operatorname{Im}\left(V_{t d}\right) \propto \eta
\end{aligned}
$$

SM prediction of $K_{L} \rightarrow \pi^{0} v \bar{V}$

- $\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{~V} \overline{\mathrm{~V}}\right)_{S M}=\kappa_{L}\left[\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right]^{2}$

$$
=(2.49 \pm 0.39) \times 10^{-11}
$$

(F. Mescia and C. Smith, PRD76, 074017(2007))

- current limit:
- $\mathrm{Br}<2.1 \times 10^{-7}$ (@90\%C.L.) by E391a
- Theoretical uncertainty: $1-2 \%$
\checkmark dominated by NNLO QCD \& EW
- "Golden mode"
- An exceptional tool to
- check SM
- discover New Physics

The E391a collaboration

- 12 institutes, ~ 50 members
- Dept. of Physics, Pusan National Univ.
- Dept. of Physics, Saga Univ.
- Joint Institute for Nuclear Research
- Dept. of Physics, National Taiwan Univ.
- Dept. of Physics and Astronomy,

Arizona State Univ.

- KEK \& SOKENDAI
- Dept. of Physics, Osaka Univ.
- Dept. of Physics, Yamagata Univ.
- Enrico Fermi Institute, Univ. of Chicago
- National Defense Academy
- Dept. of Physics, Kyoto Univ.
- Research Center for Nuclear Physics, Osaka Univ.
- Countries: Japan, the US, Taiwan, South Korea, and Russia

The E391a experiment

- K L production with KEK 12 GeV PS
- Slow extraction
- KO beamline in the East Counter Hall
- Intensity
- 2×10^{12} protons on target (POT) per 2 sec spill 4 sec cycle
- production angle: 4°, K_{L} peak momentum $2 \mathrm{GeV} / \mathrm{c}$, $\mathrm{n} / \mathrm{K}_{\mathrm{L}}$ ratio: ~ 40
- Physics runs
- Run I: February to July of 2004
- "Express" analysis with 10\% data published in PRD (2006)
- Run II: February to April of 2005
- Full data analysis
- Integrated protons: 1.4×10^{18} POT
- Run III: October - December of 2005
- Calibration ready, MC development in progress

Principle of the experiment

1. require 2 photons

- Hermetic veto system

3. reconstruct the decay vertex on the beamline assuming $M_{2 \gamma}=M_{\pi 0}$

4. require missing P_{T} and the

5. measure the photon energies and positions vertex in the fiducial region - "Pencil" beam line to improve P_{T} resolution

- 8cm diameter @ 16m from the target

Features of E391a apparatus

Analysis overview

- K L flux calculation

- Result of K_{L} reconstruction
, $6 \gamma: K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0}$
, $4 \gamma: K_{L} \rightarrow \pi^{0} \pi^{0}$
- $2 \gamma: K_{L} \rightarrow \gamma \gamma$
- Normalization by MC
- Systematics
- $K_{L} \rightarrow \pi^{0} v \bar{V}$ search
- Backgrounds
- Result

K_{L} reconstruction

- w/ 6,4,2 photons

Summary of K_{L} flux

Mode	Signal Events (Full Data Set)	Acceptance (with Accidental Loss)	Flux $(w /$ systematic errors)	Discrepancy $\left(X-\pi^{0} \pi^{0}\right) /$ $\pi^{0} \pi^{0}$
$K \rightarrow \mathrm{VY}$	20,685	$(0.697 \pm 0.004 \mathrm{stat}) \%$	$(5.41 \pm 0.37) \times 10^{9}$	5.0%

- Signal: 340-500, 497-3x5.2 < $<4<497+3 \times 5.2 \mathrm{MeV}$ for $\pi^{0} \pi^{0}, \pi^{0} \pi^{0} \pi^{0}$
- Blind analysis
- The blind "Box": signal + control region on $P_{T}-Z$ plane
- Backgrounds
- Kaon decays
- well understood
- $K_{L} \rightarrow \pi^{0} \pi^{0} \rightarrow \gamma \gamma \forall \gamma: 0.11 \pm 0.09$ events
- $K_{L} \rightarrow \gamma \gamma$: negligible
- Halo neutrons
- π^{0} production at the detectors near the beam (Collar Counters)

Halo neutron backgrounds

- Interactions of the halo neutrons with detectors
- "CCO2"
- upstream of the decay region
- π^{0} with energy leakage
- "CV"
- $\pi^{0}+X$
- w/ extra energy
- η
- reconstruction assuming $M_{2 \gamma}=M_{\pi}$
core neutron

> signal region

The Aluminum plate run

- Setting 5 mm thick Al target at 6.5 cm from the CCO2's surface
- statistics
- 5.57×10^{16} POT (data: 1.40×10^{18})
- BG estimation using the Al run - CCO2 events
- contamination to downstream by
- shower leakage
- photo nuclear effect
- η production
- evaluate the cross section

CCO2 background

- CCO2/Al events in $200-300 \mathrm{~cm}$
- normalization by the number of events
- smearing using the distribution by MC
- Opening the Control Region
- 300-340: 106 events $\rightarrow 1.9 \pm 0.2$ events
, observed: 3 events
- Result of BG at 340-500cm
- signal in target run: 9
- $9^{*}(120 / 6824)=0.16 \pm 0.05$ events

T. Sumida (Kyoto Univ.)

η production by the halo neutrons

- n's produced at CV by halo neutrons
- could be reconstructed into signal box assuming π^{0} mass
- ex.) η generated at $z=570 \mathrm{~cm}$
\rightarrow reconstructed at $z=370 \mathrm{~cm}$

- Evaluation of the cross section : by Al plate run

η production in the target run

- Assuming the vertices at the Al plate
- number of η event
- Geant4 (QBBC) + Geant3
- accidental loss factor: 0.8020
- data = MC $\times 1.0$
$\mathrm{w} /$ invariant mass $>0.52 \mathrm{GeV} / \mathrm{c}^{2}$
- well-reproduced by the Binary Cascade Model

Result of η background

- estimation
- POT normalization: $1.41 \times 10^{18} / 2.79 \times 10^{20}$
- BG events: 16
- additional factor
- target run η production: 1.0
- accidental loss: 0.8257
- TDI selection: $0.967^{\wedge} 2$
- Time difference: 0.974
- BG Result
- $16^{*}\left(1.41 \times 10^{18} / 2.79 \times 10^{20}\right)^{*}$ $0.8257^{*} 0.967^{\wedge} 2^{*} 0.974$

$$
=0.06 \pm 0.02
$$

CV background

- π^{0} productions at CV
- data: 17 events, MC(Geant3): 18.2 ± 6.1 events
- BG sources: multi π^{0} production,

$$
\pi^{0+} \text { neutron hit }
$$

- bifurcation method

- experience in Run-I

- work at the downstream
- BG estimation w/ MC

$N_{X Y}$: number of events w/ cuts " - " : rejected			rejected
	$N_{A B}$	$N_{A B}$	
$\begin{aligned} & N_{A B} / N_{A B}=N_{A B} / N_{A B} \\ \Rightarrow & N_{A B}=\left(N_{A B} \times N_{A B}\right) / N_{A B} \end{aligned}$	$N_{A B}$	$N_{A B}$	passed
- Cut sets	passed	rejected	$\xrightarrow{\text { cut }}$ A

- set-up cuts
- upstream veto detectors, CSI, π^{0} kinematics
- set A
- downstream veto detectors
- set B
- gamma selection
- Result
- 0.08 ± 0.04 events

Background summary

- Control region
- (1) $300-340 \mathrm{~cm}: 1.9 \pm 0.2$
- CCO2: 1.9 ± 0.2

Data w/ all the cuts

- (4) $300-500 \mathrm{~cm}, \mathrm{Pt}<0.12 \mathrm{GeV} / \mathrm{c}$
- CCO2: 0.26 ± 0.07
- CV-n: 0.04 ± 0.01
- CV- $\pi^{0}: 0.09 \pm 0.04$
- total: 0.39 ± 0.08
- observed: 2 event
- Signal region:
- (2) $340-400 \mathrm{~cm}: 0.15 \pm 0.05$
- CCO2: 0.11 ± 0.04
- CV- $: ~ 0.04 \pm 0.02$
- (3) 400-500cm: 0.26 ± 0.11
- CCO2: 0.05 ± 0.03
- CV-ワ: 0.02 ± 0.01
- CV- $\pi^{0}: 0.08 \pm 0.04$
- $\mathrm{KL} \rightarrow \pi^{0} \pi^{0}: 0.11 \pm 0.09$
- total: $0.41+0.11$

Opening the box

Result

- Acceptance: $A=0.666 \%$
- Flux: $\mathrm{N}_{\mathrm{KL}}=(5.13 \pm 0.40) \times 10^{9}$
- S.E.S $=1 /\left(A \cdot N_{K L}\right)$

$$
=(2.93 \pm 0.25) \times 10^{-8}
$$

- Upper Limit
- O event observation
- interval: $2.3 \mathrm{w} /$ Poisson stat.
$-\mathrm{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{~V} \overline{\mathrm{~V}}\right)<6.7 \times 10^{-8}$ (@90\% C.L.)
v arXiv:0712.4164
- cf.) KTeV

$$
\begin{aligned}
- & \pi^{0} \rightarrow \gamma \gamma \\
& \quad B r<1.6 \times 10^{-6}: \times 24 \\
- & \pi^{0} \rightarrow e^{+} e^{-} \\
& \checkmark B r<5.9 \times 10^{-7}: \times 8.8
\end{aligned}
$$

- E391a Run-I lweek
- $\mathrm{Br}<2.1 \times 10^{-7}: \times 3.1$

Summary

- $K_{L} \rightarrow \pi^{0} v \bar{v}$ decay
- Direct measurement of CP violation parameter η
- Sensitive to New Physics
- The E391a experiment
- First dedicated experiment to $K_{L} \rightarrow \pi^{0} v \bar{V}$
- 3 physics runs
- Analysis of Run-II full data completed
- Result
- Single Event Sensitivity
- S.E.S. $=1 /(A \cdot N)=(2.9 \pm 0.3) \times 10^{-8}$
- Background
- $N_{B G}=0.41 \pm 0.11$
- Upper Limit
- O event observed
- $\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)<6.7 \times 10^{-8}$ (@90\% C.L.)

