Search for the decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$ at KEK-PS E391a experiment

Toshi SUMIDA (Kyoto University)

Mar. 26th 2008 JPS 63rd Annual Meeting

Outline

- Theoretical motivation
- The E391a experiment
 - Method
 - Detector
- Data analysis
 - → K_L flux
 - Backgrounds
 - ▶ Results

The $K_L \rightarrow \pi^0 \nu \overline{\nu}$ decay

• "Direct" CP violation process

• Measurement of the parameter η in CKM

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
K⁰

$$V_{td} & V_{ts} & V_{tb} \\ V_{td} & V$$

- Amplitude

$$A(K_L \to \pi^0 V \overline{V}) \propto A(K^0 \to \pi^0 V \overline{V}) - A(\overline{K}^0 \to \pi^0 V \overline{V})$$

$$\propto V_{td} * V_{ts} - V_{ts} * V_{td}$$

$$= 2 \times V_{ts} \times Im(V_{td}) \propto \eta$$

SM prediction of $K_L \rightarrow \pi^0 V \overline{V}$

• Br(
$$K_L \rightarrow \pi^0 \nu \bar{\nu}$$
)_{SM} = $\kappa_L \left[\frac{\operatorname{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right]^2$

$$= (2.49 \pm 0.39) \times 10^{-11}$$

(F. Mescia and C. Smith, PRD76, 074017(2007))

- current limit:
 - Br < 2.1×10^{-7} (@90%C.L.) by E391a

dominated by NNLO QCD & EW

- "Golden mode"
- An exceptional tool to
 - check SM
 - discover New Physics

uncertainty for the SM prediction, U. Haisch, KAON'07 (arXiv:0707.3098)

The E391a collaboration

- 12 institutes, ~50 members
 - Dept. of Physics, Pusan National Univ.
 - Dept. of Physics, Saga Univ.
 - Joint Institute for Nuclear Research
 - Dept. of Physics, National Taiwan Univ.
 - Dept. of Physics and Astronomy, Arizona State Univ.
 - KEK & SOKENDAI
 - Dept. of Physics, Osaka Univ.
 - Dept. of Physics, Yamagata Univ.
 - Enrico Fermi Institute, Univ. of Chicago
 - National Defense Academy
 - Dept. of Physics, Kyoto Univ.
 - Research Center for Nuclear Physics, Osaka Univ.
 - Countries: Japan, the US, Taiwan, South Korea, and Russia

The E391a experiment

- K_L production with KEK 12GeV PS
 - Slow extraction
 - KO beamline in the East Counter Hall
 - Intensity
 - 2 x 10¹² protons on target (POT) per 2sec spill 4sec cycle
 - ▶ production angle: 4°, K_L peak momentum 2GeV/c, n/K_L ratio: ~40
- Physics runs
 - Run I: February to July of 2004
 - "Express" analysis with 10% data published in PRD (2006)
 - Run II: February to April of 2005
 - Full data analysis
 - Integrated protons: 1.4x10¹⁸ POT
 - Run III: October December of 2005
 - Calibration ready, MC development in progress

Principle of the experiment

- 1. require 2 photons
 - Hermetic veto system

- 2. measure the photon energies and positions
- 3. reconstruct the decay vertex on the beamline assuming $M_{2Y} = M_{\pi 0}$

JPS 63rd annual meeting - Mar. 26, 2008

- 4. require missing P_T and the vertex in the fiducial region
 - "Pencil" beam line to improve P_T resolution
 - 8cm diameter @ 16m from the target

detector

Features of E391a apparatus

JPS 63rd annual meeting - Mar. 26, 2008

"Search for the decay $K_L\!\to\!\pi^0\nu\overline{\nu}$ at KEK-PS E391a"

T. Sumida (Kyoto Univ.)

Analysis overview

• K_L flux calculation

- Result of K_L reconstruction

▶ 6γ:
$$K_L \to \pi^0 \pi^0 \pi^0$$

- +4γ: $K_L → π^0 π^0$
- 2γ: K_L→γγ
- -Normalization by MC
- Systematics

• $K_L \rightarrow \pi^0 \nu \bar{\nu}$ search

- Backgrounds
- Result

K_L reconstruction

• w/ 6,4,2 photons

Summary of K_L flux

Mode	Signal Events (Full Data Set)	Acceptance (with Accidental Loss)	Flux (w/ systematic errors)	Discrepancy (X - π ⁰ π ⁰)/ π ⁰ π ⁰
K → YY	20,685	(0.697 ± 0.004 _{Stat})%	(5.41 ± 0.37) × 10 ⁹	5.0%
K → π ⁰ π ⁰	1494.9 (1500 - 5.1) (π ⁰ π ⁰ π ⁰ contribution)	$(3.35 \pm 0.03_{Stat}) \times 10^{-4}$	$(5.13 \pm 0.40) \times 10^9$	0%
K → π ⁰ π ⁰ π ⁰	70,054	(7.13 ± 0.06 _{Stat}) × 10 ⁻⁵	(5.02 ± 0.35) x 10 ⁹	-1.9%

• Signal: 340-500, 497-3x5.2 < M < 497+3x5.2 MeV for $\pi^0\pi^0$, $\pi^0\pi^0$

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ search

- Blind analysis
 - The blind "Box": signal + control region on P_T Z plane
- Backgrounds
 - -Kaon decays
 - well understood

 - $K_L \rightarrow \gamma \gamma$: negligible
 - Halo neutrons
 - \bullet π^0 production at the detectors near the beam (Collar Counters)

Halo neutron backgrounds

- Interactions of the halo neutrons with detectors
 - "CCO2"
 - upstream of the decay region
 - π^0 with energy leakage
 - - π⁰ + X
 - w/ extra energy
 - - reconstruction assuming

The Aluminum plate run

- Setting 5 mm thick Al target
 at 6.5 cm from the CCO2's surface
- statistics
 - 5.57×10¹⁶ POT (data: 1.40×10¹⁸)
- BG estimation using the Al run
 - CCO2 events
 - contamination to downstream by
 - shower leakage
 - photo nuclear effect
 - η production
 - > evaluate the cross section

CC02 background

- CC02/Al events in 200-300cm
 - normalization by the number of events
 - smearing using the distribution by MC
- Opening the Control Region
 - 300-340: 106 events \rightarrow 1.9±0.2 events
 - observed: 3 events
- Result of BG at 340-500cm

 - signal in target run: 9 $9*(120/6824) = 0.16 \pm 0.05$ events

14

n production by the halo neutrons

- n's produced at CV by halo neutrons
 - could be reconstructed into signal box assuming π^0 mass
 - ex.) η generated at z = 570cm
 - \rightarrow reconstructed at z = 370cm

- Evaluation of the cross section : by Al plate run

η production in the target run

- Assuming the vertices at the Al plate
- number of η event
 - Geant4 (QBBC) + Geant3
 - accidental loss factor: 0.8020
 - data = MC x 1.0
 w/ invariant mass > 0.52 GeV/c²
 - well-reproduced by the Binary Cascade Model

Result of η background

estimation

- POT normalization: 1.41x10¹⁸ / 2.79x10²⁰

- BG events: 16

additional factor

 \rightarrow target run η production: 1.0

▶ accidental loss: 0.8257

TDI selection: 0.967²

▶ Time difference: 0.974

• BG Result

 $- 16*(1.41\times10^{18} / 2.79\times10^{20}) *$ $0.8257 * 0.967^2 * 0.974$ $= 0.06 \pm 0.02$

17

CV background

- π^0 productions at CV
 - data: 17 events, MC(Geant3): 18.2±6.1 events
- BG sources: multi π⁰ production, π^0 + neutron hit
 - bifurcation method
 - experience in Run-I
 - work at the downstream
 - BG estimation w/ MC

 N_{XY} : number of events w/ cuts " - ": rejected

$$N_{AB}/N_{AB} = N_{AB}/N_{AB}$$

 $\Rightarrow N_{AB} = (N_{AB} \times N_{AB})/N_{AB}$

- Cut sets
- set-up cuts
 - upstream veto detectors, CsI, π^0 kinematics
 - set A
 - downstream veto detectors
 - set B
 - gamma selection
- Result
 - 0.08±0.04 events

510 520 530 540 550 560 570 580

data

w/ all the cuts

- MC

Background summary

- Control region
 - (1) 300-340cm : 1.9±0.2
 - → CCO2: 1.9±0.2
 - observed: 3 events
 - (4) 300-500cm, Pt<0.12 GeV/c
 - CC02: 0.26±0.07
 - CV-η: 0.04±0.01
 - CV-π⁰: 0.09±0.04
 - total: 0.39±0.08
 - observed: 2 event
- Signal region:
 - (2) 340-400cm: 0.15±0.05
 - ▶ CCO2: 0.11±0.04
 - ► CV-η: 0.04±0.02
 - (3) 400-500cm: 0.26±0.11
 - CC02: 0.05±0.03
 - CV-η: 0.02±0.01
 - CV-π⁰: 0.08±0.04
 - $K_L \rightarrow \pi^0 \pi^0$: 0.11±0.09
 - total: 0.41+0.11

19

Opening the box

20

Result

- Acceptance: A = 0.666%
- Flux: $N_{KL} = (5.13 \pm 0.40) \times 10^9$

• S.E.S = 1 /
$$(A \cdot N_{KL})$$

= $(2.93 \pm 0.25) \times 10^{-8}$

- Upper Limit
 - O event observation
 - interval: 2.3 w/ Poisson stat.
 - Br(K_L→ π^0 ν $\bar{\nu}$) < 6.7 × 10⁻⁸ (@90% C.L.)

√ arXiv:0712.4164

```
cf.) KTeV
    - \pi^0 \rightarrow \gamma \gamma
         \checkmark Br < 1.6 \times 10^{-6}: \times 24
    -\pi^0 \rightarrow e^+e^-V
         \checkmark Br < 5.9 \times 10^{-7}: \times 8.8
▶ E391a Run-I 1week
```

 $^{-}$ Br < 2.1 × 10⁻⁷ : × 3.1

Summary

- $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay
 - Direct measurement of CP violation parameter η
 - Sensitive to New Physics
- The E391a experiment
 - First dedicated experiment to $K_L \rightarrow \pi^0 \nu \bar{\nu}$
 - 3 physics runs
 - Analysis of Run-II full data completed
- Result
 - Single Event Sensitivity

$$\rightarrow$$
 S.E.S. = $1/(A \cdot N) = (2.9 \pm 0.3) \times 10^{-8}$

- Background
 - $N_{BG} = 0.41 \pm 0.11$
- Upper Limit
 - > 0 event observed
 - ▶ Br(K_L→ π^0 ∨ $\bar{\nu}$) < 6.7 × 10⁻⁸ (@90% C.L.)