E14実験におけるバックグラウンド事象 に関する研究

Contents

 $OK_L \rightarrow \pi^0 v v$ 探索実験(E14実験)の紹介

OK_L→π⁰νν探索実験(E14実験)における 信号の同定方法

OE14実験におけるバックグラウンド事象

〇各バックグラウンド事象の特徴

Osummary

<u>E14実験の検出器</u>

 ※ K_L→π⁰vvシグナルの条件
※ 「π⁰からの2γ以外は何もない」
※ 検出器とK_Lビームラインの特徴
※ γ線の位置とエネルギーを検出するための 電磁カロリメーター(Csl結晶を使用)
※ 崩壊領域を4π囲むveto検出 (Cslカロリメーター以外はveto検出器として使用)
※ 非常に細く絞ったビーム

<u>事象の再構成</u>

信号の同定

P_t

signal box Z_{vtx}

※他に何も粒子がないことを確認(veto)

 シグナルらしさの確認 (運動力学的カット)
● 再構成されたⁿの横運動量P_tが高いことを要求。
● K_L→π⁺π⁻π⁰(P_t<133MeV)などに有効
● 再構成されたzが崩壊領域内であることを要求
● 崩壊点がveto検出器に囲まれていることを確認

※ γ線らしさの確認(cluster shape cut)
※ 中性子によるハドロンクラスターの排除
※ fusionクラスターの排除

<u> バックグラウンド事象</u>

※K山間ヱお酒のバックグラウンド		分岐比
*** 「「「「」」」にいい、 *** 「「」」にいい、 *** 「」」、 *** 「」」、 *** 「」」、 *** 「」」、 *** 「」」、 *** 「」」、 *** 「」」、 *** 「」」、 *** 」、 *** 】、 *** 】 、 *** 】 、 *** 】 、 *** 】、 *** 】、 *** 】、 *** 】、 *** 】、 *** 】、 *** 】、 *** 】、 *** 】	$K_L \rightarrow \pi^0 \pi^0$	8. 7 × 10 ⁻⁴
** $K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ (2つの荷電粒子を検出ミス) ** $M_{L} \rightarrow \pi^{-} \pi^{-} e^{+} v \alpha \mathcal{E}$	$K_L \rightarrow \pi^+ \pi^- \pi^0$	0. 125
	$K_L \rightarrow \pi^- e^+ v$	0. 20
	$K_{I} \rightarrow \pi^{0} \nu \nu$	2. 8x10 ⁻¹¹

 ※ ハロー中性子起源のバックグラウンド
※ ハロー中性子が検出器と相互作用し、 ⁿ⁰(→ 2γ)、η(→2γ 40%)を生成。
※ γ線のエネルギーを間違える →Z_{vtx}がsignal boxの中に入る
※ 生成場所 CC02、CV
※ CC02, CV-π⁰, CV-η

Signal / Background Summary

3 snowmass years

		# of event
Signal	$K_L \rightarrow \pi^0 v v$	2. 7±0. 05
KL BG	$K_L \rightarrow \pi^0 \pi^0$	1. 7±0. 1
	$K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	0.08±0.04
	$K_L \rightarrow \pi^- e^+ v$	0. 02±0. 001
Halon BG	CV – π^0	0. 08
	CV-η	0.3

$K_1 \rightarrow \pi^0 \pi^0 / (\pi^0 / (\pi^0 / \pi^0))$

※3つの種類に分類 even event ◎正しい組み合わせ #1つの π^0 から2つのγ % odd event ※間違った組み合わせ ※2つのπ⁰から1つずつのγ # fusion event 普通のクラスターで2クラスター

 $K_{I} \rightarrow \pi^{0} \pi^{0}$ even BG

 $K_{I} \rightarrow \pi^{0} \pi^{0}$ odd BG

>> odd event

※間違った組み合わせ。
※運動力学的カットが有効。
※余分なγ線2個→vetoしやすい

 $K_L \rightarrow \pi^0 \pi^0$ odd BG:0.01

Keys: 運動力学的カット Veto検出器の光子検出能力

横軸 運動力学的カットの名前

$K_L \rightarrow \pi^0 \pi^0$ fusion BG

$K_{I} \rightarrow \pi^{0}\pi^{0}$ BGのまとめ

各バックグラウンドともに

良く抑えられている。

Signal: 2.7

Even event

Keys: Veto検出器の 光子検出能力

Fusion event

Keys: cluster shape cut

<u>CV-ηバックグラウンド</u>

CV-n BGに対するカット

Keys: "cluster shape cut"

CV-n BG

0.3

☆ signalとη BGで異なった分布をしている 参 効果的なカットの導入

- ※γ線の入射角度とクラスターの形状には 相関がある
 - →クラスターの形状によるカット、 Artificial Neural Net(ANN)の導入 →signal efficiency 90%に対し、 CV-η BGを10分の1に抑えることが可能

signal efficiency

signal acceptance

Summary

※ E14実験におけるバックグラウンド事象 ※K中間子起源のバックグラウンド 各BG事象の特徴 $K_{\rm I} = 2\pi^{0}$, $K_{\rm I} = \pi^{+} \pi^{-} \pi^{0}$, $K_{\rm I} = 2\pi^{-} e^{+} v$ ※ ハロー中性子バックグラウンド を理解 \Leftrightarrow CCO2, CV- π^0 , CV- η ※ バックグラウンド事象削減のKey Point $\ll K_1 - 2\pi^0$ even event Weto検出器の光子検出能力
 \ll K_I->2 π^0 fusion event 特徴を生かした Cluster shape cut Cutの開発 & CV-ηバックグラウンド Cluster shape cut 🐡 T0 do

※各バックグラウンド事象に対するさらなる詳細な研究

$K_L \rightarrow \pi^0 \nu \nu 探索実験$

