$K_L \rightarrow \pi^0 \nu \nu \tau$ 探索実験のための Cslカロリメータ読み出しPMT baseの開発

* * * *

京都大学大学院理学研究科

物理第二教室 高エネルギー研究室 **増田 孝彦** 河崎 直樹 臼杵 亨 塩見 公志

森井秀樹 隅田土詞 南條創 野村正 笹尾登

 $\sqrt{K_L} \rightarrow \pi^0 \nu \overline{\nu}$ の物理 *s W*

ηの精密測定

 ν_s

- 崩壞振幅
 - $A(K_L \to \pi^0 \nu \bar{\nu}) \cong \frac{1}{\sqrt{2}} [A(K^0 \to \pi^0 \nu \bar{\nu}) A(\bar{K}^0 \to \pi^0 \nu \bar{\nu})]$

 $\propto V_{td}^* V^{ts} - V_{ts}^* V_{td} \propto 2i\eta$

d

 \boldsymbol{S}

d

 $(\overline{\rho},\overline{\eta})$

 ϕ_2

 $K_L \rightarrow \pi^0 \gamma \overline{\nu}$

he Physical Society of Japan the 63rd Annual Meeting

V

d

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

(1,0)

この崩壊モードはη以外のパラメータが持つ不定性がきわめて小さく(1-2%)、 η の精密測定が可能。またBeyond SMの効果も見やすい。

 ν_t

間接的CPの破れに対して、直接的CPの破れの効果が支配的。 S

 $d \nu s$

崩壞分岐比 W ▶ (2.8±0.4)×10⁻¹¹ (SMからの予言) ν_W

step by step approach

✓ E391a (KEK PS)

- $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 探索に特化した初の実験
- 実験手法の確立
- 2004年2月~2005年12月までData taking

\checkmark E14 (J-PARC)

- Step 1
 - ► SES 8×10⁻¹²
 - ▶ 世界初の崩壊event観測を目標
- Step 2
 - ▶ 100event程度の観測
 - ηの精密測定

6.15 m

1/4

The Physical Society of Japan the 63rd Annual Meeting

3.5

E14 Csl calorimeter

E14実験ではCsI main Calorimeterに、3000本のKTeV pure CsIを再利用する 同時に読み出し用光検出器にもKTeV PMTを用いる

KTeV・・・以前にFermilabで行われたKaon rare decay探索実験

問題点

 $\langle \bullet \rangle$

- E14はPMTを真空中に設置する
- PMT数がE391aに比べて2.3倍(1300本→3000本)
 - ▶ 真空中で約3kWの発熱があり、冷却が大変

√スペース

- HVケーブルを3000本真空中に引き込まなければならない
- 冷却用の配管
- PMT固定
- √ 光電子増倍率
 - KTeV PMT + KTeV base(抵抗分割型)でのgainはtyp.6000
 - ▶ 目標30000

➡Cockcroft Walton base (以下CW base)の使用を検討 また、電圧分割比を変更してgain増加

6

CW circuit

✓ Diode & Capacitorのブリッジで昇圧する回路
✓ 交流から高圧を発生

7

The Physical Society of Japan the 63rd Annual Meeting

 \diamond

CW baseのメリット・デメリット

✓ merit

- 発熱(消費電力)が小さい
 - ▶ 冷却が容易
- low voltage (5V) 供給でケーブリングが楽
 - 真空へのフィードスルーが少ない
 - ▶ コントロール電圧で各PMTのHV値を真空内部で多 チャンネル供給&調整可能

8

✓ demerit

- 昇圧がACなのでNoiseの源になる
- 電圧分割比が整数のみ
 - ▶ 細かいtuningが出来ない

CW base prototype

✓ 松定プレシジョン製 HPMC-1.8N-01

- 分割比
- 最大定格出力
- ドライブ電圧
- 発振周波数
- 出力制御

コントロール電圧 Vcon=0~1.8V

K 2:1:1:1:1:0.5 A

-1800V

145kHz

9

 $V_{in} + 5V(fixed)$

✓今回はこのCW baseについて 測定した各種データを発表する

The Physical Society of Japan the 63rd Annual Meeting

✓ Drive voltage $V_{in}(5V)$ ---12.5±2mA---50~70mW@1500V ✓ Control voltage $V_{con}(1.5V)$ ---150 μ A---225 μ W (negligible)

- KTeV resistor-divided base 738mW@1500V

√1/10に減少する事ができた

10 The Physical Society of Japan the 63rd Annual Meeting

 \diamond

 \diamond

Ripple noise				
✓CW circuit の発振によって発生。				
◇ ✓ 無視できるレベルにおさまっていた TDS 3034B 12 Feb 2008 13:55:29	² o			\diamond
Tek停止	ôμV 2μV MHz kHz			
CW base output	-Pk		-	
440μ 440μ 440μ 440μ 440μ Ch4 Pk-	V Pk	HV	μV_{p-p}	kHz
Ground of oscilloscope	v	1000	10-20	130
		1250	15-25	130
Fourier-transform spectrum of CW base output	ut	1500	20-30	135
Ch1 1.00mVΩN M 40.0µs A Ch1 \-1.92mV Ch4 1.00mV #N 12 Feb 12 Feb 12 Feb 13:55:29 Math 5.00µV 12.5kHz 21.00 % 13:55:29	2008 9	1750	35-40	138
		Ripple noise height & frequency vs. HV		

noise

 $\langle \bullet \rangle$

✓ Ripple noise以外には、明らかなノイズは見られなかった。

Sunday, March 23, 2008

Gain curve gain curve fitting function 8×10⁴ 7×10⁴ 6×10⁴ [p0]×[Supply voltage]^[p1] oase 5×10⁴ 0.0007884 ± 0.0005969 **p0** 4×10⁴ 2.4 ± 0.1031 **p1** 3×10⁴ 2×10⁴ gain **10**⁴ base e 7.034e-08 ± 2.816e-08 **p0 p1** 3.527 ± 0.0542 3×10³ 1400 1600 1000 1200 1800 Supply voltage[V]

✓電圧分割比を変更する事により、

十分な光電子増幅率が得られた (over 30000 (1MeV→1mV signal))

Rate effect

✓ Dynamic range (Geant4 sim)

deposit energy per crystal[MeV]	rate [kHz]	
0-1	87 1Me	V Threshole
1-10	42	60kHz
10-100	16	
100-1000	2.4	
1000-	0.003	

Then I measured ~600kHz@100MeV(2000p.e.) ~24kHz@1GeV(20000p.e.) (safety factor ×10)

14 The Physical Society of Japan the 63rd Annual Meeting

Rate effect set up

✓バックグラウンド用LEDを使用
◇✓ADCでmain LEDが光っている時のみを測定し、
LEDのrate effectを除去

Sunday, March 23, 2008

Sunday, March 23, 2008

Linearity

✓ The measurement method

- 2つのLEDを別々に光らせた時(下左図)のADCデータの合成と、
同時に光らせた時(下右図)のADCデータの比をLinearityと定義した。
Linearityが完璧な場合は、Rが精確に1になる。

18 The Physical Society of Japan the 63rd Annual Meeting

✓ Dynamic range で±4%の変動が見られる
✓ CW base prototypeでは2GeV以上で悪化した

summary

- ✓ CW base prototypeの基本特性の測定を行った
 - 消費電力 → 抵抗分割型の1/10まで減少
 - rate effectは問題なし \rightarrow < 1%
 - PMT gain 目標達成 30000
- ✓今回のPrototypeの問題点
 - linearityの悪化
 - linearityの許容値を知る必要あり

√ 今後の予定

- HV control システムの確立
- 来年度末に行われるビームテストに向けて量産(100本)