Search for the decay $K_L \rightarrow \pi^0 v \overline{v}$ at KEK-PS E391a

JPS 2007 Autumn meeting Toshi SUMIDA

Physics motivations

- $K_L \rightarrow \pi^0 \nu \nu$
 - FCNC process with $\Delta S = I$
 - Direct CP violation
- Measurement of the branching ratio
 - $A(K_L \rightarrow \pi^0 vv) \propto Vtd^*Vts Vts^*Vtd$
 - = 2 x Vts x Im(Vtd) $\propto \eta$
 - \Rightarrow Br(K_L $\rightarrow \pi^0 \nu \nu) \propto \eta^2$

: Direct measurement of η

- Br→ η : σ ~I-2%
- $Br(K_L \rightarrow \pi^0 v v)_{SM} \sim (2.8 \pm 0.4) \times 10^{-11}$

- consistency between K⁰ and K⁺
- comparison with B
- Loop in the diagram (EW penguin)
 - The probe for new physics

The E391a experiment

I institutes, ~50 members

- Dept. of Physics, Saga Univ.
- Dept. of Physics, Pusan National Univ.
- Joint Institute for Nuclear Research
- Dept. of Physics, National Taiwan Univ.
- Dept. of Physics, Osaka Univ.
- High Energy Accelerator Research Organization (KEK)
- Enrico Fermi Institute, Univ. of Chicago
- National Defense Academy
- Research Center for Nuclear Physics, Osaka Univ.
- Dept. of Physics, Kyoto Univ.
- Dept. of Physics, Yamagata Univ.

At KEK I2GeV PS

- Run time
 - Run-I : Feb 2004 Jul. 2004
 - new result published with Iweek(10%) data
 - Run-II : Feb 2005 Apr. 2005
 - Run-III : Nov. 2005 Dec. 2005

Report the status of Run-II full data analysis

• El

Principle of the experiment

Detect 2γ from π^0 decay + no other particles

(1) measure the gamma hit position and energy with the CsI calorimeter

Backgrounds for $K_L \rightarrow \pi^0 \sqrt{V}$

KL decay

- O K_L→γγ
 - no extra particles
 - 🔍 cut
 - Pt
 - acoplanarity angle
 - negligible
- $K_L \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$
 - 2 gamma missing
 - 🔍 cut
 - veto counters
 - "fusion" of gammas
 - estimated to be 0.1±0.1 events
- π⁰ production by halo neutrons
 others ??

Halo neutron background

π⁰'s from the interaction at some detectors

halo neutron

cut

reconstructed vertex

vertices moved by shower leakage and additional energy deposition estimation

signal region

- upstream (CC02)
 - special run
- downstream (CV)
 - \blacksquare $\pi 0$ generation in MC

"Final" Plot

l cut

 tight photon vetoes
 gamma quality selection
 single π⁰ event plot with the full data sample
 "blind" signal region
 z: 310-500 cm
 Pt: 0.12-0.24 GeV/c

remaining events
upstream
downstream
low Pt events

Low Pt events

• MC result for Halo neutrons, $K_L \rightarrow 2\pi^0$ • no contribution

 \Rightarrow Low Pt events : another background

Eta production MC

η's produced at CV by halo neutrons

- could be reconstructed into signal box assuming π⁰ mass
 - ex.) η generated at z = 570cm \rightarrow reconstructed at z = 370cm

MC simulation

- The latest hadronic package in geant4.8.3 (May 2007)
 - Binary Cascade model in QBBC

 η generation z(cm)

Result of n production MC

number of low Pt (< 0.12 GeV/c)events at 320-500cm

- data: 18 events
- η MC: 768 events
 - cf.) POT normalization \rightarrow data = MC x 1.3
- **o**thers
 - downstream: 0.18 events
 - upstream: 0.06 events

n production in the target run

check the Pt distribution of η

Result of n production

Result of n production

Cuts for n BG

π0 projection R cut Pt / Pz vs. z-vertex

Cuts for n BG (cont'd)

injection angle of gamma
 reconstructed : θ_{rec}
 measurement w/ energy shape: θ_{r1}
 X² = (θ_{r1}-θ_{rec}) / σ_{r1}

Result of n BG estimation

- new cuts applied
 ~ 1/10 rejection
 x 0.60 acceptance
- 24 events remaining w/ η MC
 - x normalization with low Pt events
 - = 0.43 ± 0.11 events

Downstream background

Upstream background

using target run data

count the number of events in the box

BG events

- 320 500: 0.32±0.10
- 340 500: 0.13±0.05

Total background

- values of BGs
 - CV: 0.11
 - $K_L \rightarrow 2\pi^0: 0.1$
 - Eta: 0.43
 - CC02
 - z=320cm: 0.32
 - z=340cm: 0.13
- Single Event Sensitivity (SES)
 - 3-4 x 10⁻⁸
- S/N : x 15 improved from Runl
- Expected Upper Limit
 - Br < 0.9×10^{-8}

Summary

 Now we understand all the sources in the 2gamma (single π0) events in E391a
 upstream, downstream → Halo neutrons
 low Pt → eta

 estimation done with a MC based on geant4
 total background level
 ~0.6 events

To do

cross check

Backup slides

$K_L \rightarrow \pi^0 \sqrt{\nu}$ experiments

extremely challenging

- small branching fraction
- many background sources
- 3 body decay
 - weak kinematical constraint
 - all particles neutral
- Current upper limit
 - Br < 2.1×10⁻⁷ (90% C.L.)
 - E391a, PRD 74:051105, 2006
- Step by Step approach
 - **e** E391a
 - The first dedicated experiment to establish experimental method
 - measurement at O(10⁻⁹)
 - J-Parc EI4
 - Step-I: 8x10⁻¹², event observation
 - Step-2: ~10⁻¹³, precise measurement

The E391a Detector

Features of E391a

"Pencil" beamline

- 8cm diameter at Csl (16m from the target)
- Hermetic veto system
 - reject the background from $K_L \rightarrow 2\pi^0$
- Vacuum
 - Evacuate decay region to reduce the background from the interaction between neutrons and the residual gas
 - Decay region: 10⁻⁵ Pa
 - Detector region: 0.1 Pa
 - separated with thin material

High vacuum ~10⁻⁵Pa

Membrane (0.2 mm, CH2, 1g/cm³)

$\pi 0$ reconstruction with 2γ

) assume 2γ invariant mass is $M_{\pi 0}$

acoplanarity angle

events in the target run

- momentum and pt of π^0
- limited by the geometrical acceptance
- distributions from the target run and physics run show good agreement
 - \Rightarrow estimate shower leakage probability

Normalization

- 3 steps
- beamline simulation (geant3)
 - 436.25 halon / 10^{10} POT : fixed \rightarrow N_{halon}
- gsim4test (geant4)
 - 5x10⁸ halon incident
 - number of collected eta events
 - 20555 events : easily change due to the condition to
 - collect "clean" eta events
 - if the condition is loose \rightarrow many events, low probability to remain in the final state
- gsim (geant3)
 - IxI0⁸ eta events generated
- Comparison of Statistics
 - POT
 - POT in gsim4test: 5×10^8 / N_{halon} = (POTg4)
 - probability of eta events occurrence: 20555 / (POTg4)
 - = P_{eta}: most uncerntain
 - POT in gsim: $5 \times 10^8 / P_{eta} = (POTgsim)$
 - compare (POTgsim) to POT of data : (POTdata)
 - (POTdata)/(POTgsim) = 1.41×10^{18} / 1.67×10^{20} = 0.504×10^{-2} : POTnorm
 - Low Pt events (most reliable)
 - just compare the number of events in z: 320-500, Pt<0.12 GeV/c without the (Pt/Pz v.s. z) cut</p>

. . . | | | | | | | |

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8

10

0.1

GeV/c

h1

50352

0.00246

0.005747

5.024e+04

11

Entrie

Mean

RMS

Underflo

[ntegral

Downstream events

Iooking at events with π0 productions at CV

- data: 43 events, MC: 51.6±9.6 events
- BG sources
 - multi π⁰ production
 - direct hits of neutrons
- bifurcation method
 - works at the downstream
 - BG estimation w/ MC to select only CV events

Upstream events

estimation by π^0 production target run

- 5mm-thick Al production target at the entrance of decay region
- "core" neutrons hit it and produce π^{0} 's
 - used for correction of calibration w/ known vertex
 - Half intensity of primary proton
 - look at the behavior of the tail by leakage
 - Same cuts for $\Pi^0 \vee \overline{\vee}$ analysis
 - ~ 3000 CC02 events (halon MC: ~20 events)

signal distribution

