日本物理学会 2011年秋季大会 於 弘前大学 18pSH05

K^oTO実験におけるCharged Vetoの コントロールシステム

京大理、KEK^A、岡山大^B <u>増田孝彦</u>、関繁人、内藤大地、前田陽祐 河崎直樹、塩見公志、南條創 野村正^A、笹尾登^B for the K^OTO Collaboration

TOC

- Introduction
 - K^oTO実験
 - Charged Veto
 - 構成
 - コントロールシステム
 - MPPCの制御

K^oTO experiment

- K^oTO (K^o at TOkai)
 - $K_L \rightarrow \pi^0 v \bar{v}$:長寿命中性K中間子(K_L)の稀崩壊探索実験
 - Br($K_L \rightarrow \pi^0 v v$) $\propto \eta^2$ ~ 2.5×10⁻¹¹

• 実験目的

- K_L→π⁰vv 崩壊事象の発見
- 崩壊分岐比測定による
 <u>CPVパラメータηの直接決定</u>

Concept

- ・信号の同定
 - ν は検出できないので、 π^0 からの崩壊粒子を見る
 - π⁰の崩壊モード
 - $\pi^{0} \rightarrow e^{+}e^{-}\gamma$ 荷電粒子のtrackingによる π^{0} の再構成が可能 (Br 1.2%)
 - *π*⁰→2γ
 分岐比が大きい
 (Br 98.8%)

ער

π⁰からの2γ

Front barrel

- Cslカロリメータで γ の位置・エネルギーを求め、 π^0 を再構成
- K_Lとπ⁰の運動方向のずれ(νによる運動量移行の存在)

Main barrel

NCC

• その他に何も粒子が無い

Charged Veto

Charged Veto (CV)

- 役割
 - 荷電粒子を含む、KL崩壊由来のB.G.を排除する
 - $K_L \rightarrow \pi^+ \pi^- \pi^0$, $K_L \rightarrow \pi e v$, ...
- デザイン
 - 真空中に設置 (0.1Pa)
 - Cslカロリメータの直近と250mm上流に 置かれる2層からなる
 - 厚さ3mm、幅70mmの プラスチックシンチレータ92本で構成
 - プラスチックシンチレータ
 +波長変換ファイバー
 +MPPCで読み出し
 - 総チャンネル数 184
- 性能
 - 出力 > 3p.e./100keV
 - 時間分解能 0.8ns

MPPC

CVは読み出しにMPPCを用いている ightarrow

✓ MPPCのメリット

- 省スペース \bullet
- 高量子効率 •

😢 MPPCのデメリット

- 低ゲイン (~105) •
- 高ダークカウントレート (~1MHz @ 20°C, 1p.e.) \bullet
- 温度依存性 \bullet
 - Break down voltage (50mV/°C) •
 - 量子効率(5%/°C) •
 - ダークカウントレート(右下図) •

JPS 2011 AUTUMN MEET

٥L

2

5

6 threshold[p.e.]

MPPC

• CVは読み出しにMPPCを用いている

✓ MPPCのメリット

- 省スペース
- 高量子効率

😣 MPPCのデメリット

- 低ゲイン (~10⁵)
- 高ダークカウントレート (~1MHz @ 20°C, 1p.e.)
- 温度依存性
 - Break down voltage (50mV/°C)
 - 量子効率(5%/°C)
 - ダークカウントレート(右下図)

JPS 2011 AUTUMN MEET

5

6 threshold[p.e.]

MPPC温度コントロール

- K^oTO実験では、MPPCの温度をコントロールするため 浜松ホトニクスと共同で 「ペルチェ冷却型MPPC」を開発した。
 - ピクセルサイズ 50×50μm²
 - 受光面 3×3mm²
 - 2段型ペルチェ素子内蔵

CV コントロールシステム

- 184個のMPPCに対して、1ch毎に
 - Main bias(-70V)のON/OFF
 - Biasコントロール
 - Gain調整
 - 温度コントロール
 - 全てのMPPCを 5±0.3°C に調整する
 - Gain, Noise, Q.E.の安定化
 - Amp.の電源ON/OFF
 - その他、正常動作を保証する各種電圧・電流モニター
 - MPPCの消費電流(~0.1µA)、温度モニターなど

CVコントロール

• システム概要

	Control	Monitor	Note
MPPC bias	Negative bias (-70V) ON/OFF	Negative bias voltage	1ch毎にBiasのOn/Offを行う
	Control bias 0-5V	Control bias voltage	1ch毎にGain調整
		Bias current (0.1µA)	MPPCに流れている暗電流の確認
MPPC temp.	Temperature feedback	Peltier voltage (100mV)	MPPCの温度調整
		Peltier current (100mA)	ペルチェ電流調整
		Thermistor resistance (10kΩ)	MPPCの温度測定
		Temperature monitor	K ^o TO-MPPC boardの温度測定
Amp.	Power supply(±5V) ON/OFF	Power supply voltage(±5V)	1ch毎にAmp.のOn/Offを行う
		Power supply current(15mA)	プリアンプの消費電流を確認

CVコントロール

• システム概要

	Control	Monitor	Note
MPPC bias	Negative bias (-70V) ON/OFF	Negative bias voltage	1ch毎にBiasのOn/Offを行う
	Control bias 0-5V	Control bias voltage	1ch毎にGain調整
		Bias current (0.1µA)	MPPCに流れている暗電流の確認
MPPC temp.	Temperature feedback	Peltier voltage (100mV)	MPPCの温度調整
		Peltier current (100mA)	ペルチェ電流調整
		Thermistor resistance (10kΩ)	MPPCの温度測定
		Temperature monitor	K ^o TO-MPPC boardの温度測定
Amp.	Power supply(±5V) ON/OFF	Power supply voltage(±5V)	1ch毎にAmp.のOn/Offを行う
		Power supply current(15mA)	プリアンプの消費電流を確認

温度コントロール回路

- PID制御のうち、I制御のみでコントロール
- アナログ制御なので、運用が簡便
 - MPPC_(のすぐ横のサーミスタ)の温度を読み取り、
 フィードバックをかけてペルチェにかかる電圧(電流)を制御する

温度コントロール回路

- PID制御のうち、l制御のみでコントロール
- アナログ制御なので、運用が簡便
 - MPPC_(のすぐ横のサーミスタ)の温度を読み取り、
 フィードバックをかけてペルチェにかかる電圧(電流)を制御する

11

試験Set up

試作した回路を用いて、長期試験を行った

- MPPC4個を真空槽に封入(20Pa前後)
- MPPCの基板と真空槽を銅テープで熱接触
- 真空槽自体を恒温槽に入れ、温度コントロール

初期変化 (20℃→5℃)

約1分で安定化

長期温度サイクル試験

- ±0.1℃以内で制御できている
- 高温側が30°Cを超えた辺りで飽和している
 - V_{peltier}(ペルチェ用電源電圧)を上げればもっと冷やすことは可能だが、 コントロール回路側の発熱が大きくなるので、
 - なるべく低電圧で使用したい。

KOTO MEETING

真空度

設定値

Vpeltier 1V

20Pa

5°C

CVコントロール

• システム概要

	Control	Monitor	Note
MPPC bias	Negative bias (-70V) ON/OFF	Negative bias voltage	1ch毎にBiasのOn/Offを行う
	Control bias 0-5V	Control bias voltage	1ch毎にGain調整
		Bias current (0.1µA)	MPPCに流れている暗電流の確認
MPPC temp.	Temperature feedback	Peltier voltage (100mV)	MPPCの温度調整
		Peltier current (100mA)	ペルチェ電流調整
		Thermistor resistance (10kΩ)	MPPCの温度測定
		Temperature monitor	K ^o TO-MPPC boardの温度測定
Amp.	Power supply(±5V) ON/OFF	Power supply voltage(±5V)	1ch毎にAmp.のOn/Offを行う
		Power supply current(15mA)	プリアンプの消費電流を確認

KOTO MEETING

CVコントロール

• システム概要

	Control	Monitor	Note
MPPC bias	Negative bias (-70V) ON/OFF	Negative bias voltage	1ch毎にBiasのOn/Offを行う
	Control bias 0-5V	Control bias voltage	1ch毎にGain調整
		Bias current (0.1µA)	MPPCに流れている暗電流の確認
MPPC temp.	Temperature feedback	Peltier voltage (100mV)	MPPCの温度調整
		Peltier current (100mA)	ペルチェ電流調整
		Thermistor resistance (10kΩ)	MPPCの温度測定
		Temperature monitor	K ^o TO-MPPC boardの温度測定
Amp.	Power supply(±5V) ON/OFF	Power supply voltage(±5V)	1ch毎にAmp.のOn/Offを行う
		Power supply current(15mA)	プリアンプの消費電流を確認

Bias コントロール

 アノード側(-70V)の電圧は全MPPC一律で固定とし、 カソード側の電圧(0~5V)でBiasをコントロール

MPPCの暗電流を常時モニターし、動作保証に用いる

16

KOTO MEETING

Summary & Schedule

- K^oTO実験
 - $K_L \rightarrow \pi^0 v \overline{v}$ 探索実験
 - Charged Veto
 - MPPC読み出し
- CVコントロールシステム
 - MPPC温度のコントロール・モニター
 - MPPCバイアスのコントロール・モニター
 - アナログ制御回路の設計開発を行った
 - アナログ制御回路を試作し、
 実際にMPPCの温度・バイアスが
 正しくコントロール・モニター出来ている事を確認した
- Schedule
 - 1月中のインストールを目指し、試作・量産を進めて行く。

17

V · M

d

Beyond SM

18PSH05

19

Energy deposit

JPS 2011 AUTUMN MEETING @Hirosaki University 18pSH05

CV- π^0 B.G.

エネルギーを大きく間違え
 <u>ると</u>増加

JPS 2011 AUTUMN MEETING @HIROSAKI UNIVERSITY 18PSH05

 π

n

N

Csl

CC02- π^{0} B.G.

n

• エネルギーを小さく間違えると増加

JPS 2011 AUTUMN MEETING @Hirosaki University

Y

18PSH05

Bias On/Off/Monitor

- MPPCに-70Vを個別印加するスイッチ
 - Photoカプラで制御
 - Panasonic AQY210EH
- Biasのモニター
 - 確度±20mV(@-70V)が欲しい
 - 温度変化を補正するためのセンサや、キャリブレーションが必要

Bias current monitor

• MPPCに流れている電流(typ. 0.2µA)をモニターしたい

24

KOTO MEETING

	Control	Monitor	Note
MPPC bias	Negative bias (-70V) ON/OFF	Negative bias voltage	1ch毎にBiasのOn/Offを行う
	Control bias 0-5V	Control bias voltage	1ch毎にGain調整
		Bias current (0.1µA)	MPPCに流れている暗電流の確認
MPPC temp.	Temperature feedback	Peltier voltage (100mV)	MPPCの低温側の温度調整
		Peltier current (100mA)	ペルチェ電流
		Thermistor resistance (10kΩ)	MPPCの低温側の温度測定
		Temperature monitor	MPPCの高温側の温度測定
Amp.	Power supply(±5V) ON/OFF	Power supply voltage(±5V)	1ch毎にAmp.のOn/Offを行う
		Power supply current(15mA)	プリアンプの消費電流を確認

Bias control

- ・
 全MPPCの出力を揃える
 - -70Vに対して100mV程度で調整を行う必要がある
 - Negative bias(-70V)を全MPPC一律にかけ、 信号側の電位をDACで調整する方式を取る

Bias control

- コントロール系を追加することによる影響の評価
 - ・ ゲイン
 - 波形

Gain curve

- One P.E. peakで測定
- Breakdown voltageは一致
- Gain slopeは約7%減少
 - 1kΩを付けた効果(~5%)でほぼ説明できる

KOTO MEETING

Pulse shape

- 試験は-71Vのみ
- オシロスコープで波形を1万取得し、それぞれの 立ち上がり・立ち下がり時間を求める
- Fit function $\frac{C}{\tau_{\text{rise}} \tau_{\text{fall}}} \left[\exp\left(\frac{t_0 t}{\tau_{\text{fall}}}\right) \exp\left(\frac{t_0 t}{\tau_{\text{rise}}}\right) \right] \theta(t_0)$

Pulse shape

- ・ 立ち上がり(前半) 1.89 → 1.92 nsec (+1.6%)
- たち下がり(後半) 25.31 → 23.93 nsec (-5.5%)
 - 1kΩの影響(~5%)で説明可能

まとめ

- DAC 調整機構に依る大きな影響はない
 - Breakdown voltageには影響無し
 - gainが7%減少
 - 波形の立ち下がりが5.5%速くなる
 - Control bias voltageモニターはDAC出力をADCで読むだけ

	Control	Monitor	Note
MPPC bias	Negative bias (-70V) ON/OFF	Negative bias voltage	1ch毎にBiasのOn/Offを行う
	Control bias 0-5V	Control bias voltage	1ch毎にGain調整
		Bias current (0.1µA)	MPPCに流れている暗電流の確認

まとめ

- DAC 調整機構に依る大きな影響はない
 - Breakdown voltageには影響無し
 - gainが7%減少
 - 波形の立ち下がりが5.5%速くなる
 - Control bias voltageモニターはDAC出力をADCで読むだけ

	Control	Monitor	Note
MPPC bias	Negative bias (-70V) ON/OFF	Negative bias voltage	1ch毎にBiasのOn/Offを行う
	Control bias 0-5V	Control bias voltage	1ch毎にGain調整
		Bias current (0.1µA)	MPPCに流れている暗電流の確認

Pulse shape fit

• Fit function

$$\frac{C}{\tau_{\rm rise} - \tau_{\rm fall}} \left[\exp\left(\frac{t_0 - t}{\tau_{\rm fall}}\right) - \exp\left(\frac{t_0 - t}{\tau_{\rm rise}}\right) \right] \theta(t_0)$$

• Cut

•

- Pulse height : 1p.e. peak $\pm 1\sigma$
 - Charge : 1p.e. peak $\pm 1\sigma$
- Chi2/NDF : 0.75~1.25

・ Error bar はGND noiseのみ

G

Gain curve

• Set up

- 測定環境 5°C(恒温槽)
- LED 1kHz
- Charge integrated ADC
- ×10 NIM AMP 2段で100倍増幅
- Bias -70V ~ -71V (DAC controlled(\$\$\fi [-70V,+0V]~[-70V,+1V])\$

Normal (-71V)

DAC controlled (-70V,+1V)

Charge ADCのデータ (LED光量はそれぞれ異なる)

KOTO MEETING

恒温槽にMPPCを入れ、 3~35℃の間で温度モニタ出力を測定

KOTO MEETING

Noise level (bias current)

- Noise level : 2mVrms
 - 2nAの精度で測定可能

プレ 量 産 MPPC

 MPPCボード Ver.0 と プレ量産MPPC を用いて 温度コントローラの真空長期試験を行った。

長期温度サイクル試験

• 4つのMPPCでは、明らかな個体差は確認されなかった

ダークカウントノイズによるロス

darkcount loss

2010/3/21 JPS@Okayama University 21aBE13 28

<u>к</u>

試作、評価

- バイアスコントロール電圧が0V, 4Vで、Breakdown voltage ~
 1.5Vの範囲を試験した。
- どちらも設計通り動くことを確認した。

40