

Jet in ATLAS

隅田 土詞 2012年7月5日 Kyoto ATLAS group meeting

Outline

- Introduction
 - ATLAS calorimeter
 - What are Jets ?
 - physics, measurement
 - Jet reconstruction
- Jet calibration
 - Absolute jet calibration
 - In-situ jet calibrations
- Jet Energy Scale uncertainty in 2010 data
 - MC-base, single particle
- Pile-up
 - corrections for jets (and MET)
- JES uncertainty in 2011 full data
 - pile-up correction
 - in-situ calibrations

Introduction

コライダーでの座標表示

- pseudo-rapidity
 - $\eta = -\ln(\tan(\Theta/2))$
 - ▶ Θ: 天頂角
 - 0:検出器中心から垂直の面
 - coverage in ATLAS : $|\eta| < \sim 4.9$
- ・ビーム軸周りの方位角
 - $-\pi < Φ < π$ (rad)
- ・検出器中心から延びる方向

- "longitudinal" (あんまり気にしない)

- ・物理オブジェクト同士の"距離"
 - ⁻ ΔR = $\sqrt{(\Delta \eta^2 + \Delta \Phi^2)}$
 - もちろん dN/dR には意味があるし、
 中心付近では実際の大きさも近い

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

The ATLAS Calorimeter

Kyoto-ATLAS meeting, 5 Jul 2012

陽子-陽子衝突で起こること

- 高エネルギーでのハドロン衝突=パートン+パートン衝突 2→2プロセス
 - ・ gg 反応(一番多い)

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

, etc

000000

もう少し…

ハドロン衝突で起こっていること (₩ + jet 生成の場合)

Hard interaction described by matrix element

Resonant decay

Initial state radiation

Final state radiation; parton shower

Multiple interaction

Initial and final state radiation for each interaction

Beam remnants

Color connection

Hadronization

Underlying Event と Multiple Interactions

何故 Jet を測るのか

- もちろん、コライダーでは何でも測る 「 e/γ
 - ▶ EM calo, track 有/無
 - -μ
 - tracker, chamber
 - τ
 - ▶ decay に依存した測定
 - ⁻ q (u, d, s, c, b) , g→q̄q
 - 全部jetになる
 - ✓ Jet も測る
- ・物理解析/測定
 - ⁻ Jet 生成 (di-jet, multi-jet)
 - W/Z→qq̄(')
 - [−] t →bW
 - $^{-}$ H→**bb**, WW, ZZ
 - ğ→qq→qqχ

✓ つまり一番最初の反応 (2→2)から、
 統計が増えて様々な解析を行う全ての段階で、
 Jet の E, pTを正確に測る事は非常に重要。

Jet in ATLAS

Vh 編晶e lets は 何か

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

Jet reconstruction Inputs to Jet Rec.

- ・Jetを組む、とは
 - エネルギークラスター構築
 - EM/Hadron shower でできた calorimeterheenfecton纏め回する
 threshold は pedestal-oの整数倍が異な noise:
 - - noise を抑える事が重要
 - typical なの値: 40MeV
 - Clustering algorithm
 - "4-2-0 method"
 - E>40 O cell ϵ seed ϵ その周りの E>2o の cell、
- 1. Cells with $|\mathbf{E}| > 4\sigma_{\text{noise}}$ seed the cluster 2. Cells with $|E| > 2\sigma_{noise}$ iteratively
- added 3. Neighbor cells with |E|>o form
 - surface of the cluster
- Noisy cells (~0.1%) are masked and not used.
- さらにその周りの全て cell energy を加える
- 3D (R, η, Φ) Topological Cluster (TopoCluster) · electric noise (こ強い Jet Reguirements)

・この Topo-cluster を

jet reconstruction algorithm への input とする

- 昔: SIS-cone, ATLAS-cone, kt
- default: "Anti-kt" アルゴリズム, w/ R=0.4/0.6
 - ・2008年くらいに採用
 - Infrared-safe, collinear safe
 - 素性が良い

Kyoto-ATLAS meeting, 5 Jul 2012

Jet Requi

Jet in ATLAS

✓ Jet とは、恣意的な定義による object である。

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

Jetのキャリブレーション

Jet absolute calibration

- - 基本的に、カロリメータで測るのは "EM scale" energy:
 - LAr: ビームテストでの electron を使った calibration が base
 - Tile: ¹³⁷Cs を使った独自システムでの calibration が base
 - Jetのreconstructionも今のところ EM energy で行われている
- ・ "本当の" Jet と比べると?
 - Truth jet:ハドロンレベルの情報を使って
 Anti-kt アルゴリズムでJetを再構成したもの
 - Reco jet: カロリメータから出発した jet
 - ハドロンは e/γよりも落とすエネルギーが小さい (e/h~1.3)
 - invisible energy (原子核の励起, slow neutron, etc.)
 - ・ Dead material によるエネルギー損失
- ので、再構成された jetのエネルギーに対して、 補正 factor をかける必要がある
 - MC を使って、Truth jet を作る
 - E(reco)/E(true): をある E, ŋ の bin でplot すると、
 右の図の様になるので基本的にこの中心値の"逆数"を
 true energy に戻すための補正 factor として使う
 - "Numerical Inversion"と呼ぶ

Kyoto-ATLAS meeting, 5 Jul 2012

Jet calibration (2)

- さらに、各 E, η bin での inversion factorに対して、 log(E)の polynomial で fit する
 - この結果を parameter として database に持つ
 - この constants を
 "Jet Energy Scale" または "JES" という
 - EM scale に JES をかけて得られたエネルギーを "EM+JES" と呼ぶ
 - これが bottom line
- ・重要な物理量であるJetの p_T (横方向運動量)は
 TopoCluster を massless と見做して、4-vector を組む
- ・その他
 - "LC": Local Calibration
 - Topo-cluster の「ハドロンらしさ」を定義して それに応じた factor をかける
 - origin correction
 - primary vertex の位置を使った pT の補正
 - eta correction
 - truth と reco での eta の差を補正

Kyoto-ATLAS meeting, 5 Jul 2012

Jet calibration (3)

• eta-dependence of JES

Toshi SUMIDA

30

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

JES uncertainty (物理、

E^{jet}/Et 1.08 Pythia QCD jets (nominal) Alpgen + Herwig + Jimmy 1.06 Perugia2010 Tune 1.04 0.96 ATLAS Preliminary 0.94 10^{2} 10^{3} 30 40 2×10² 2×10^{3} p_{τ}^{jet} [GeV] 1.1 cp^{jet}/pct^{tuth}> Anti-k, R=0.6, EM+JES, 0.3 ≤ |η | < 0.8 1.08 Pythia QCD jets (nominal) Anti 40,0% 0.8, 20,0% 0.8 1:88 • Additional Dread Material (ID only) □ Alpgen + Herwig + Jimmy 1:86 Perugia2010 Tune 1:02 1.02 0.98 8:96 ATLAS Preliminary 0:96 10^{3} **ATLAS** Preliminary 2×10² $2 \times 10^{\circ}$ [GeVİ 0.94 10^{3} 30 40 10^{2} 2×10^{2} 2×10^{3} p_{τ}^{jet} [GeV] 1. $< p_T^{jet}/p_T^{truth} >$ Anti-k, *R*=0.6, EM+JES, 0.3 ≤ |η | < 0.8 1.08 • Pythia QCD jets (nominal) Additional Dead Material 1.06 Additional Dead Material (ID only) 1.04 1.02 0.98 0.96 ATLAS Preliminary 0.94 10³ 10^{2} 2×10² 2×10^{3} 30 40 p_{τ}^{jet} [GeV]

Toshi SUMIDA

 ・どれだけ正確にJetをキャリブレーションできているか - "正確に"とは"精度良く" (resolution) ということではない。 ある E, pr binで、中心値をどう間違い得るか、の指標。

- JES uncertainty の source
 - 全部MCに頼ってのcalibrationなので、 jet energy response は 物理モデル (パートン放出、ハドロン化、シャワー生成)に依る ~3%

 $< p_T^{jet}/p_T^{MC truth jet} >$

1.1

1.08

1.06

1.04

1.02

0.98

AntiK₊, R=0.6, JES Calibration, 0.3<Inl<0.8

10% Higher Topo-cluster Thresholds

 10^{2}

Monte Carlo QCD jets

10

p_r^{jet} [GeV]

2×10²

△ 10% Lower Topo-cluster Thresholds

Additional Dead Material

Shifted Beam Spot

JES uncertainty (初期のまとめ)

- Result in 2010 data
 - 4% @ p_T=30GeV, 0.3<|η|<0.8
 - forward では~10%

"In-situ" JES calibrations/validations

- ・データを使った "jetとしての" (single particle ではなく) calibration の確認をして、JES の不定性を評価したい
 - Gamma-jet balance method
 - ・ Robust な EM scale の energy 測定と比較する
 - ⁻ Z-jet balance
 - ・Zのmassが大きいので、low Pt jet のvalidation ができる
 - Multi-jet method
 - high-pT Jetと low-pT recoil jet system を比べる
 - 一番高い pr までいける
 - (track-jet/calo-jet)
 - track だけで jet を組んで、それと比較
 - Di-jet inter-calibration
 - barrel と forward での responseを比べて、
 各 η 領域で systematics を propagate

Kyoto-ATLAS meeting, 5 Jul 2012

Gamma-Jet balance

- Direct balance
 - $p_T(jet)/p_T(\gamma)$
- Missing ET production fraction (MPF) method
 - -
- Result in 2011 data
 - 1-2% で data と MC は合っている
 - 合わない分は correction へ

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

30 40

 $\mathsf{R}_{\mathsf{MPF}}$

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

1.04

1.03

1.02

1.01

1.00 0.99 0.98

0.97

0.96

Z-jet balance

- $p_T(jet)/p_T(reference Z \rightarrow ee)$
 - much less background than γ-jet
 - probes low-p_T jets
- Result in 2011 data

- data/mc agreement within 3%

Jet in A

< 750 GeV

٦

Kyoto-ATLAS meeting, 5 Jul 2012

Dijet balance

- Analysis methods
 - Standard Method
 - p_T(probe jet)/p_T(ref. jet)
 - Matrix Method
 - not defining probe or reference jets $|\eta 1| < |\eta 2|$
- Results in data 2011
 - ~10% difference between Pythia and Herwig
 - taken into systematics in the forward region

Matrix Method

$$\mathcal{A} = rac{p_T^{ ext{left}} - p_T^{ ext{right}}}{p_T^{ ext{avg}}}, \ \eta^{ ext{left}} < \eta^{ ext{right}}$$

$$\mathcal{R} = rac{p_T^{ ext{left}}}{p_T^{ ext{right}}} = rac{c^{ ext{right}}}{c^{ ext{left}}} = rac{2+\langle \mathcal{A}
angle}{2-\langle \mathcal{A}
angle}$$

Solve for all ci using matrix of lin. eq.

2 1 i = 'right jet" 'left jet" 5 i = F. Rühr

Kyoto-ATLAS meeting, 5 Jul 2012

Systematic uncertainties

ここまでのまとめ

- ・Jetとは
 - 高エネルギーパートンを元とするハドロンの束
- Jet calibration
 - カロリメータの EM(or LC)-scale でのレスポンス
 - エネルギークラスターの構築
 - Jetの再構築
 - ・を行なって、MCで求めた JES をかける
- Calibration がどれくらい合っているか
 - JES uncertainty
 - 物理モデルや、検出器の反応、ノイズ、物質量等からくる jet energy response の不定性
 - 基本的に single particle measurement を使って評価
 - "In-situ" calibrations
 - ▶ データを使って JESを検証
 - (これからはJESの補正、uncertaintyの評価に使う)

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

Pile-up in 2011

Pile-up

- ・Z→μ⁺μ⁻の イベントディスプレイ
 - with **20** vertices
 - p_T>400MeVの
 トラックのみを表示
 - 楕円の大きさは primary vertex再構成 の不定性を20倍にして 表している
- カロリメータ(特にハドロン)での エネルギー測定や、 横方向消失運動量(missing E_T)の 測定に大きく影響する

Energies from Pile-up

- Jet (広範囲での energy 測定)に影響するもの
 - In-time pileup
 - 同時に起こった複数の衝突からの寄与
 - ✓ energy を足し上げてしまう
 - dependent on
 - その bunch x-ing での同時衝突数: Number of Primary Vertex (NPV)
 - ✓ tracking で数える
 - Out-of-time pileup
 - bi-polar pulse shape in the calorimeters
 - total charge (\$0 (noise-tolerant)
 - 長い negative charge 部分が energy deposition のあとに続く
 - これが、energyをさっ引いてしまう
 - dependent on
 - その bunch x-ing の前の部分の <u>平均</u>衝突数:
 - " µ " (<mu>)
 - total cross section measurement

Pileup corrections

- Calorimeter で測る energy を足したり引いたりされると jet の pT を間違えるので、これに対して補正をしたい
 - Offset (pile-up) correction
- Correction methods
 - Tower/cluster-based method
 - eta-dependent (こ、NPV or µ毎に energy in calo-towers/clusters の table を作って、それで補正
 - topo-cluster の noise-suppression が MC で完璧に記述できないため、 あまり上手くいかなかった
 - Truth-pT based method
 - MC truth jet information を使って、
 ある η, NPV, μ での EM/LC scale jet pT と比較。
 これを table に持つ
 - E(offset) = A*(NPV $\langle NPV \rangle_{ref}$) + B*($\mu \langle \mu \rangle_{ref}$)
 - ✓ [<NPV>ref, <µ>ref]: offset が0になる点(reference point)
 - ✓ 現在の default
 - Others
 - Jet area method, Ntrack, JVF, etc....

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

Jet calibration with offset correction

- ・ reference point について
 - JES が、offset correction なしで
 求められたのであれば、その MC サンプルの平均
 - しかし、mc11a (µ~7) 以降、
 特にLC-scale jet については
 平均 response が大きすぎるために
 jet energy response に対する
 polynomial での fit が絶望的
 - → 一旦 [<NPV>_{ref}, <µ>_{ref}] = [1,0] として offset を引いたのちに JES を計算する。
 - ✓ jet energy response の形が回復
 - NPV 間での pT response の spread が ちゃんと修正されている

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

m

ATLAS Simulation

- 20 ≤ p_+^{tr}

'<25 Ge∖

ר שׂ⊢ 120 שׂך 100

100

Pythia Dijet, anti-k, R=0.4

hl < 2.1, 7.5 ≤ μ < 8.5

New JES in 2012

In-situ calibrationsのabsolute JESへの取り込み
 現在の calibration scheme

Correction from the in-situ measurements

Total JES uncertainty

- JES uncertainty への寄与
 - Absolute JES calibration method
 - Data/Pythia
 - ⁻ Relative calibration for jets with $\eta > 0.8$
 - High pT uncertainty for jets with pT > 1TeV
 - Pile-up
 - totalで1%@100-500GeVを達成
 - Calibration tool, JES uncertainty provider も一応できた。

• 最新情報

- Twiki: <u>https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/JetsWithPileup2011</u> <u>https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/JetCalibrationToolsWinter2011</u>
- Jet calib tool in svn: <u>https://svnweb.cern.ch/trac/atlasgrp/browser/CombPerf/JetETMiss/JetCalibrationTools</u>

Uncertainty in in-situ measurements in 2011

Physics/Flavor dependent JES

Kyoto-ATLAS meeting, 5 Jul 2012

Pile-up correction in 2012

- ・より高い pile-up rate への対策
 - $\checkmark \mu \sim 35 @ 6x10^{33}$
 - Linearity on NPV は~40 まで OK
 - とりあえず、今の correction は動く
 - Pile-up uncertaintyの評価
 - ref. point は [1,0]のままでいいか?
 - slopeのsyst.err.を最小にする study
- Event-by-event, jet-by-jet corrections
 - 今の correction は NPV と µ だけで決まっているので、 jet resolution を改善しない。
 - Jet Vertex Fraction (JVF)を correction に使う?
 - ・N_{track}を使う?
 - 色々と study が進行中

JVF[jet1,vtx1] = 1JVF[jet1,vtx2] = 0

JVF[jet2,vtx1] = f JVF[jet2,vtx2] = 1-f

まとめ

- Jet calibration
 - Offset (Pile-up) correction
 - In- and Out-of time pile-up
 - Truth-based pT method
 - MC-based absolute calibration
 - pT (reco) / pT (truth)
 - Residual correction with in-situ measurements
- JES uncertainty
 - In-situ measurements による補正を入れた事で、 100-500 GeV で 1% を達成
- Todo
 - Luminosityの増加に合わせた pile-up correctionの改良が必要
 - event-by-event, jet-by-jet に
 - Physics dependent な jet calibration の提供

Backup slides

TileCal

55

Kyoto-ATLAS meeting, 5 Jul 2012

Jet in ATLAS

Double Gaussian Noise

- Fitting with 5 parameters
 - ⁻ C, μ, σ₁, σ₂, R
 - R: relative normalization
 - Double gaussian describes data very well
- New MC
 - Implementation of double gauss. noise
 - Missing E_T in Tile

10³

10²

10

1

10⁻¹

5

10

-10

0

10

20

40

0

30

METCalo sumE_{τ} (GeV)

20

15

Toshi SUMIDA

METCalo missE_T (GeV)

Jetができるまで(1)

• 高エネルギーパートン生成後

Jetができるまで(2)

カロリメータでのエネルギー測定から

MC を用いて truth jet (generator による全ての stable particles に対して再構成アルゴリズムを適用したもの) の"true" energyと、カロリメータから出発して再構成された "reco.jet" energy の比を取って決定する。

EM scale の calibration は基本的に

Jetレベルで I-2%。

Jetができるまで(まとめ)

Jet測定の不定性 (2)

- (2.) エネルギークラスター構築
 - 基本的に [I つの粒子→I クラスター]だと思って良い
 - threshold は pedestal の "σ"の整数倍が基準
 - noise を抑える事が重要
 - ✓ typical なσの値 : 40MeV
 - Constituent: input for reconstruction
 - TopoCluster : 3D, default
 - · 4-240 n Erist Quppressionを seed にして
 - TopoTowerをの周りの E>2σの cell、
 - noise suppression
 (Tower) さらにその周りの全て cell energy を加える
 - $\mathbf{W} = \mathbf{w} =$

Jet Energy Resolution

• JER in 2010/2011 data

Jet in ATLAS

References

- "Jet energy scale and its systematic uncertainty for jets produced in proton-proton collisions at $\sqrt{s} = 7$ TeV and measured with the ATLAS"
 - ⁻ ATLAS-CONF-2010-056
- "Jet energy scale and its systematic uncertainty in proton-proton collisions at sqrt(s)=7 TeV in ATLAS 2010 data"
 - ⁻ ATLAS-CONF-2011-032
- "ATLAS Calorimeter Response to Single Isolated Hadrons and Estimation of the Calorimeter Jet Scale Uncertainty"
 - ⁻ ATLAS-CONF-2011-028
- "Jet energy measurement with the ATLAS detector in proton-proton collisions at sqrt(s) = 7 TeV"
 - ⁻ arXiv: 1112.6426
- Jet and Etmiss reconstruction and calibration (P. Loch) https://indico.cern.ch/getFile.py/access?contribId=6&resId=0&materialId=0&confId=48780
- An introduction to modern jet algorithms (P. Francavilla) <u>https://indico.cern.ch/getFile.py/access?contribId=15&resId=0&materialId=slides&confId=48780</u>
- EM+JES calibration and global sequential layer calibration (D.L. Mateos)
 - https://indico.cern.ch/getFile.py/access?contribId=11&sessionId=15&resId=0&materialId=slides&confId=91219

References (2)

- "Pile-up corrections for jets from proton-proton collisions at sqrts=7 TeV in ATLAS in 2011"
 ATL-COM-PHYS-2012-349
- "Probing the measurement of jet energies with the ATLAS detector using Z+jet events from proton-proton collisions at sqrt(s) = 7 TeV"
 - ATLAS-COM-CONF-2012-015
- "Probing the measurement of jet energies with the ATLAS detector using photon+jet events in proton-proton collisions at sqrt{s} = 7 TeV"
 - ATL-COM-PHYS-2012-237

