LI Muon Endcap Trigger Phase-0 & Phase-I Upgrade

Takuya Tashiro Kyoto Univ.

Current trigger detectors in the Endcap

present TGC muon trigger scheme

• Deviation from infinite momentum track(dR,dФ) is measured with 3 TGC stations

- Coincidence Window is used to calculate pT
 - implemented in Sector Logic
 - each $(dR,d\Phi)$ corresponds to pT[1,6]

Coincidence Window Example

muon hit position deviation $(dR,d\Phi)$

Phase-0 upgrade

- · require hit in muon Endcap Inner station (EI/FI)
- · take El/Fl BW coincidence in Sector Logic

EI/FI

 particle production at the beam pipe is the dominant source of the background.

white: LI trigger

blue: L1 trigger with offline track

Phase - 0 trigger scheme in the Endcap

Upgrade on Sector Logic

New function is introduced to take BW-EI/FI coincidence.

New function

- with 2 operating modes

Current Status of Sector Logic Upgrade

- New coincidence logic is implemented (Done)
 - tested at the testbench system
- * New cotrol registers are prepared (Done)
 - to determine which pT and ROI to require EI/FI hit
 - to select operating mode
 - * "flagging mode": NOT change trigger result
 - * "main mode" : change trigger result
- Additional flag is introduced in R/O information.
 - to monitor SL behaviour in flagging mode.
 - * flag = I : candidate is rejected in "main mode"
 - * flag = 0 : candidate is NOT rejected in "main mode"

testbench system

Trigger efficiency study in Phase-0

• El/Fl does not cover all the BW region.

- ROI to take coincidence should be chosen carefully.
- Efficiency study using single muon MC

- efficiency = {trigger with hit in EI/FI} / trigger
 - El is quite complicated

(Tani , Kobe)

Trigger rate reduction in Phase-0

LI-MUII in data 2011 → emulate phase-0 logic

$$\frac{\text{trigger with hit in EI/FI rate}}{\text{trigger rate}} = 73\%$$

hit in EI/FI = detected in both EI/FI wire and strip

trigger rate is suppressed by 27%

(Tamagawa, Shinshu)

Phase I Upgrade

- New detectors are installed
 - sTGC - MicroMegas New Small Wheel (NSW)
- Small Wheel coverage will be extended
 η = 1.3 2.4 (for trigger)
- Incidence angle is measured with ~0.1 mrad resolution
 - $-d\theta$: the incident angle deviated from the track pointing to IP
 - clean up tracks not pointing to IP.

(Suzuki, KEK)

Phase I detectors

New Sector Logic Board

New Small Wheel(NSW)

- · hit data
 - 16 bit / track
 - * position :10 bit
 - * $d\theta$: 5 bit
 - * hit flag : I bit
 - * total : 16 bit
 - 4 tracks / fibre
 - · Connection NSW New SL
 - $[3(Large) + 2(Small)] \times 8 \times 2 = 80$ fibers
 - 2 input /sector for spare

Requirements to Trigger Processor of NSW detector

- Outputs to Sector Logic should be fully synchronous to 40 MHz clock.
- NSW detectors should combine track information (MM-sTGC) before SL.
- Latency to Sector Logic should be shorter than 44 clocks.

Summary

- Phase-0 upgrade
 - New coincidence logic, El/Fl BW: Done
 - optimisation of trigger condition: ongoing
 - preparation to install in ATLAS : ongoing
 - trigger rate reduction in simple condition is 27%

- · Phase-I upgrade
 - A trigger scheme has been studied . (d θ info.)
 - Data format between NSW New SL is under discussion.