8, Dec, Naoyuki Kamo

- CONF-NOTEの結果とのconsistencyの確認
- pT binの区切り方は一緒にした(一部間違えてますが、ほぼ同じ)
- pi-△Φ(jet I,Z) binの切り方も同じ
- cut条件も同じにした(と思う)
- b-jetは関係ないので結果には載せていない
- CONF-NOTEではgaussianかpoissonでfitしているはずなの
 で、両方を試している
- fit範囲はI.4sigmaで行ったものをのせているが、実際はいろいろ試している(それほど影響はない)

gaussian fit

poisson fit

(pol0)

- low pTではgaussianもpoissonも、あまりfitがうまくいかな いので、中心値がおかしいのは、ある程度しょうがない
- 実際、>60GeVのgaussianはCONF-NOTEに近い分布に なっている(全く同じであるはずなのだが)
- が、ところどころmcとdataの値に差がありすぎる。特に 30~50GeVあたり
- これはasymmetric gaussianにしても、fit範囲を変えても同 じように差ができてしまう

back up

el_medium++, mu_medium

- $\Delta R(jet, el_medium++) < 0.1$ のjetはelectronとする
- Trigger(zee): EF_e12Tvh_loose1 (multi-electon, unprecaled)
- Trigger(zmumu): EF_mu24i_tight || EF_mu36_tight
- B-tag : MVI > 0.8119 (nominal efficiency70%)

Variable	Selection	description
e_1, e_2	$E_{\rm T}^{e_{1,2}} > 20 {\rm ~GeV}$	electron pre-selection
	$80 \text{ GeV} < M_{e^+e^-} < 116 \text{ GeV}$	
	$ \eta^{e_{1,2}} < 2.47$ excluding $1.37 < \eta^{e} < 1.52$	
leading jet	$ \eta^{\text{jet}} < 0.8, JVF > 0.25 \text{ if } p_{\text{T}} < 50 \text{ GeV}$	jet pre-selection
$\Delta R_{j,e} = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$	> 0.35 anti- $k_t R = 0.4$ jets	isolation/topology
	> 0.5 anti- $k_t R = 0.6$ jets	
$p_{\mathrm{T}}{}^{jet_2}$	$< \max\left(0.2 \times p_{\mathrm{T}}^{Z}, 10 \text{ GeV}\right)$	radiation/topology
JVF(jet2)	$ >0.25,$ if $ \eta^{jet2} <2.4$ and $p_{\rm T}<50~{\rm GeV}$	JVF restriction for
		sub-leading jets

gamma+ jet

- △R(jet,gamma) < 0.1のjetはgammaとする(ただしgammaは下表の条件を満たす)。
- Trigger: EF_g20_loose || EF_g40_loose || EF_g60_loose || EF_g80_loose || EF_g100_loose || EF_g120_loose
- B-tag : MVI > 0.8119 (nominal efficiency70%)
- selectionについては<u>https://twiki.cern.ch/twiki/bin/viewauth/</u>

<u>AtlasProtected/GammaJetCalib2012</u>に詳しく書いてある

Variable	Selection	description	
leading γ	$p_{\rm T}^{\gamma}$ >85 GeV and $ \eta^{\gamma} < 1.37$	photon pre-selection	
$E_{\rm T}^{\gamma \rm Iso}$	< 3 GeV	γ isolation	
$E_{\rm T}^{\bar{\gamma} \text{ cluster}} / (\sum p_{\rm T}^{\text{tracks}})$	\in [0,2] (single-track conversions)	jets faking photons	
	\in [0.5,1.5] (double-track conversions)		
leading jet	$p_{\rm T}^{\rm jet} > 12 \text{ GeV}$ and $ \eta^{\rm jet1} < 0.8$	jet pre-selection	
$\Delta \phi_{ m jet-\gamma}$	> 2.9 radians	radiation suppression	
$p_{\mathrm{T}}^{\mathrm{jet2}}$	$< 0.2 imes p_{\mathrm{T}}^{\gamma}$	radiation suppression	
JVF(jet2)	>0.25, if $ \eta^{jet2} < 2.4$	JVF restriction for sub-leading jets	
*pT_gamma > 85GeVは要求していない			

gaus 1.4sigma

gaus 1.4sigma

Modified Poisson

