4, Dec, Naoyuki Kamo

Fitについての考察

- jet のresponse分布はlow pTでは歪んだ形をしていて、通常の gauss fitはできない
- そのため、現在responseへのfitはasymmetry gaussianを使用している
 - [0]*TMath::Gaus(x,[1], [2]*(1 + [3]*(x-[1])))
- 一方、公式ではmodified poissonを使用
 - [0]*2.8*TMath::Poisson(x/pow([2],2),[1]/pow([2],2))
 - つまり通常のpoissonでは平均と分散が等しいので、自由度を 増やしている
- なぜ私がasymmetry gaussianを使っているかというと、low pTでのmodified poissonはlow pTでのfittingがあまりうまくいかないから(fit図をあとで載せる)

分布が歪む理由

- なぜlow pTで正規分布しないかというと、
 - 原因はlst jetのpTはI0GeVでcutをかけているため
 - また、in-situでは truth baseよりも明らかにhigh response側にtailを引いて いる(左mc dijet、右mc Zee、ただしdijetではcut値が4GeV)
 - 2nd jet vetoは10GeV以下は行わないので、lowpTでは1st jetと2nd jet以降のpTが均衡する。2nd jetが逆方向に飛ぶ場合の影響をうけている
 (?)。

cutを加味したgauss分布

- いずれにせよ、cutによって真のresponse値からmeanの値はずれているので、asymmetry gaussianはfit自体はうまくいっても、真のresponse値は得られない
- そこで、cutをかけた場合のgauss分布を素朴に再現すれば、正しく responseが分かるのではないかと思い、少し調べてみた
- あるpT_refに対してjet pTがgauss分布すると仮定する
- 実際の解析ではpT bin[min,max]で区切るので、その範囲でのmeanと sigmaは同じで、かつjetのentry分布も同じと仮定する
- もしもcutがなければ、単純にgauss分布になるはずだが、
- cutを考慮すると、あるpT_refに対するresponse分布はある値以下で0に なるgauss分布となる
- これを対象のpT領域で足しあわせて関数を作る

CutGaus

作った関数をCutGausと呼ぶことにする。

- 下は<I0GeVでcutした場合、mean=I
 sigma=0.4で、左は [0GeV,I0GeV]右は[I0GeV,
 20GeV]でDrawした絵
- low pTでの形を再現していると思う

- 次ページ以降にそれぞれの関数でfitしたものが書かれている
- 右下がCutGausでfitしたもの
- [I0GeV,20GeV]ではx2が小さくなった [20GeV,40GeV]では大きい
- meanに統計的根拠があるので、これを使用してもいいのでは?

- あと、改めて比べてみると、high pTとGaussianとAsymmetry
 Gaussianもmeanがかなりずれている所も多い。なんらかの原因
 で分布が歪んでいるためだと思う
- poissonについては、high pTでもmeanの値がgaussianから大きく
 ずれているものが多い。high pTでは適用できそうもない

back up

el_medium++, mu_medium

- $\Delta R(jet, el_medium++) < 0.1$ のjetはelectronとする
- Trigger(zee): EF_e12Tvh_loose1 (multi-electon, unprecaled)
- Trigger(zmumu): EF_mu24i_tight || EF_mu36_tight
- B-tag : MVI > 0.8119 (nominal efficiency70%)

Variable	Selection	description
e_1, e_2	$E_{\rm T}^{e_{1,2}} > 20 {\rm GeV}$	electron pre-selection
	$80 \text{ GeV} < M_{e^+e^-} < 116 \text{ GeV}$	
	$ \eta^{e_{1,2}} < 2.47$ excluding $1.37 < \eta^{e} < 1.52$	
leading jet	$ \eta^{\text{jet}} < 0.8, JVF > 0.25 \text{ if } p_{\text{T}} < 50 \text{ GeV}$	jet pre-selection
$\Delta R_{j,e} = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$	> 0.35 anti- $k_t R = 0.4$ jets	isolation/topology
	> 0.5 anti- $k_t R = 0.6$ jets	
$p_{\mathrm{T}}{}^{jet_2}$	$< \max\left(0.2 \times p_{\mathrm{T}}^{Z}, 10 \text{ GeV}\right)$	radiation/topology
JVF(jet2)	$ >0.25,$ if $ \eta^{jet2} <2.4$ and $p_{\rm T}<50~{\rm GeV}$	JVF restriction for
		sub-leading jets

gamma+ jet

- △R(jet,gamma) < 0.1のjetはgammaとする(ただしgammaは下表の条件を満たす)。
- Trigger: EF_g20_loose || EF_g40_loose || EF_g60_loose || EF_g80_loose || EF_g100_loose || EF_g120_loose
- B-tag : MVI > 0.8119 (nominal efficiency70%)
- selectionについては<u>https://twiki.cern.ch/twiki/bin/viewauth/</u>

<u>AtlasProtected/GammaJetCalib2012</u>に詳しく書いてある

Variable	Selection	description	
leading γ	$p_{\rm T}^{\gamma}$ >85 GeV and $ \eta^{\gamma} < 1.37$	photon pre-selection	
$E_{\mathrm{T}}^{\gamma \mathrm{Iso}}$	< 3 GeV	γ isolation	
$E_{\rm T}^{\bar{\gamma} \text{ cluster}} / (\sum p_{\rm T}^{\text{tracks}})$	\in [0,2] (single-track conversions)	jets faking photons	
	\in [0.5,1.5] (double-track conversions)		
leading jet	$p_{\rm T}^{\rm jet} > 12 \text{ GeV} \text{ and } \eta^{\rm jet1} < 0.8$	jet pre-selection	
$\Delta \phi_{ m jet-\gamma}$	> 2.9 radians	radiation suppression	
$p_{\mathrm{T}}^{\mathrm{jet2}}$	$< 0.2 \times p_{\mathrm{T}}^{\gamma}$	radiation suppression	
JVF(jet2)	>0.25, if $ \eta^{jet2} < 2.4$	JVF restriction for sub-leading jets	
※pT_gamma > 85GeVは要求していない			