2, Dec, Naoyuki Kamo

extrapolate to π - $\Delta \Phi$ ->0

- 2012年のCONF-NOTEではZ+jetはpT_jet/pT_Z を単純に計算していた
- 2013年の解析ではpT_ref=pT_Z*cos(△Φ)を用いて、pT_jet/pT_refをresponseとする

- ただし、 ΔΦ bin毎に、 pT_jet/pT_refのplotを作成し、
 π-ΔΦ->0でのresponseを外挿する手法をとる
 - π-ΔΦ vs pT_jet/pT_refのgraphに定数関数でfitして、
 その定数の値を外挿値とする
 - またlinearでfitしたときの π-ΔΦ=0でのresponseとの 違いをsystematicとする

- 公式にはこの手法をとっているが、b-jetでは統計量が小さいので難しいと考えられる
- CONF-NOTEでは0.2の範囲を8binにわけている
 が、binの切り方を変えて統計量を調べた
- dataよりもmcの方が統計量が少ないので、mcを 基準とする
- 次に載せるのはすべてのcutをかけた上でのb-jet
 を要求した場合のpi ΔΦ binの統計量
- Zee、AntiKt4EMTopoで調べている

mc,|eta|<0.8の統計分布

(I40GeV以上は使わないと考えれば)真ん中のhistogramが一番少なく、 最低IbinにI30 entryほど。一応fitはできるので、今回はこれで試した

Monday, 2 December 13

response vs DPHI (mc, |eta|<0.8)

mc,0.8<|eta|<1.2の統計分布

response vs DPHI (mc,0.8<|eta|<1.2)

Monday, 2 December 13

Gaussian Fit

- back upにすべてのmcのfit結果を載せている
- 次の二枚はmcで80GeV<pT<140GeV,
 140GeV<pT<200GeVの|eta|<0.8で各binをfitした
 もの

- 次の三枚は、さきほどのFitして得られた横軸pi ΔΦ、縦軸
 responseのgraph。三枚の違いはetaの範囲だけ
 - ここだけmcとdataの両方を乗せた
 - legendが見難くて申し訳ないが赤っぽいのはmc,青っぽいのはData
 - 最終的には、これにconstantでfitをしてresponseを得るが、
 今回は統計量の確認が目的なので行っていない

- inclusiveに比べると、Errorがかなり大きくあまりうまくいっていない
- Errorの範囲でconstantにおさまっているものが多い

Гef

Q.98

Pythia,

Pythia, b-jet

inclusive

back up

el_medium++, mu_medium

- $\Delta R(jet, el_medium++) < 0.1$ のjetはelectronとする
- Trigger(zee): EF_e12Tvh_loose1 (multi-electon, unprecaled)
- Trigger(zmumu): EF_mu24i_tight || EF_mu36_tight
- B-tag : MVI > 0.8119 (nominal efficiency70%)

Variable	Selection	description
e_1, e_2	$E_{\rm T}^{e_{1,2}} > 20 {\rm GeV}$	electron pre-selection
	$80 \text{ GeV} < M_{e^+e^-} < 116 \text{ GeV}$	
	$ \eta^{e_{1,2}} < 2.47$ excluding $1.37 < \eta^{e} < 1.52$	
leading jet	$ \eta^{\text{jet}} < 0.8, JVF > 0.25 \text{ if } p_{\text{T}} < 50 \text{ GeV}$	jet pre-selection
$\Delta R_{j,e} = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$	> 0.35 anti- $k_t R = 0.4$ jets	isolation/topology
	> 0.5 anti- $k_t R = 0.6$ jets	
$p_{\mathrm{T}}{}^{jet_2}$	$< \max\left(0.2 \times p_{\mathrm{T}}^{Z}, 10 \text{ GeV}\right)$	radiation/topology
JVF(jet2)	$ >0.25,$ if $ \eta^{jet2} <2.4$ and $p_{\rm T}<50~{\rm GeV}$	JVF restriction for
		sub-leading jets

gamma+ jet

- △R(jet,gamma) < 0.1のjetはgammaとする(ただしgammaは下表の条件を満たす)。
- Trigger: EF_g20_loose || EF_g40_loose || EF_g60_loose || EF_g80_loose || EF_g100_loose || EF_g120_loose
- B-tag : MVI > 0.8119 (nominal efficiency70%)
- selectionについては<u>https://twiki.cern.ch/twiki/bin/viewauth/</u>

<u>AtlasProtected/GammaJetCalib2012</u>に詳しく書いてある

Variable	Selection	description	
leading γ	$p_{\rm T}^{\gamma}$ >85 GeV and $ \eta^{\gamma} < 1.37$	photon pre-selection	
$E_{\rm T}^{\gamma \rm Iso}$	< 3 GeV	γ isolation	
$E_{\rm T}^{\gamma \text{ cluster}} / (\sum p_{\rm T}^{\rm tracks})$	\in [0,2] (single-track conversions)	jets faking photons	
	\in [0.5,1.5] (double-track conversions)		
leading jet	$p_{\rm T}^{\rm jet} > 12 \text{ GeV} \text{ and } \eta^{\rm jet1} < 0.8$	jet pre-selection	
$\Delta \phi_{ m jet-\gamma}$	> 2.9 radians	radiation suppression	
$p_{\mathrm{T}}^{\mathrm{jet2}}$	$< 0.2 imes p_{ m T}^{\gamma}$	radiation suppression	
JVF(jet2)	>0.25, if $ \eta^{jet2} < 2.4$	JVF restriction for sub-leading jets	
※pT_gamma > 85GeVは要求していない			

Entries

Underflow

Overflow

Entries

Underflow

Overflow

38

104

C

16

