11/14 KUNIGO

Takuto KUNIGO 14/11/2013 v 0.01

TILE Operation Mode Study

- ESD を input にしての chain は繋がっていないので、 RAW を input として用意する (RDO -> PRD は不可逆) TrigT1TGC は overlap flag を立てるが RDO -> PRD の際に変数 がなく保存されない。
- 変化するのは TGC_coin_pt であることに注意。(muctpi_dw_*, trig_L1_mu_* などは変化しない)
- coincidence を課すための job を投げる手順をまとめておく
- 1. % asetup AtlasPhysics, 17.2.7.5.20
- 2.必要な package を checkout
 - * % cmt co -r TrigT1TGC-00-02-85 Trigger/TrigT1/TrigT1TGC

coincidence を課す本体。LVL1TGCTrigger.cxx を次のように編集

declareProperty("VersionCW", m_VerCW="setK"); // from setM data に対する CW

declareProperty("FULLCW", m_FULLCW =true); // from false. data 用 CW

* % cmt co -r MuonTGC_CnvTools-00-07-13 MuonSpectrometer/MuonCnv/MuonTGC_CnvTools

RAW -> RDO の際に必要

MuonSpectrometer/MuonCnv/MuonTGC_CnvTools/src/TGC_RodDecoderReadout.cxx:L30 declareProperty("SkipCoincidence", m_skipCoincidence=true); // from false これで BS の coincidence 情報ではなく TrigT1TGC の coincidence の bit が記録される

• TILE の情報も追加した D3PD を追加したい場合は次の手順も必要

* % cmt co -r TrigMuonD3PDMaker-00-00-73 PhysicsAnalysis/D3PDMaker/TrigMuonD3PDMaker これに detail level で Tile の情報を追加 PhysicsAnalysis/D3PDMaker/TrigMuonD3PDMaker で % patch -p0 -E < /afs/<u>cern.ch/user/t/toshi/public/TileMuon/Tile.diff</u>

3.これらで必要な package はそろったので、全てを gmake する。もしく は、

% cp -r /afs/cern.ch/user/t/toshi/scratch0/public/athena/scripts \$TestArea/

% cd scripts

% ./br_gmake.sh

4.Reco_trf.py の準備

% cd \$TestArea/WorkArea/run

% cp -r /afs/cern.ch/user/t/toshi/scratch0/public/athena/MuonCnvExample ./

BS(RAW)->RDOの->digit の chain と digit の上でTrigT1TGC が動くようにするため

% cp /afs/cern.ch/user/t/toshi/scratch0/public/athena/myLVL1ConfigSvcConfig.py ./

% get_files -xmls LVL1Config.xml

LVL1ConfigSvc のため

5.Reco_trf.py

Reco_trf.py \

inputBSFile=data12_8TeV.00216416.physics_EnhancedBias.merge.RAW/data12_8TeV. 00216416.physics_EnhancedBias.merge.RAW._lb0189._SFO-4._0002.1 \

postInclude_r2e=myLVL1ConfigSvcConfig.py

postExec_e2d=topSequence.L1TgcSkim.DumpAll=True \

outputNTUP_L1TGCFile=L1TGC.physics.root

6.Grid job を投げる

pathena --nFilesPerJob=1 --inDS \${inputDS} \

--outDS \${outputDS} --individualOutDS --dbRelease=LATEST \

--trf "Reco_trf.py maxEvents=-1 --ignoreerrors=True autoConfiguration=everything postInclude_r2e=myLVL1ConfigSvcConfig.py postExec_e2d=topSequence.L1TgcSkim.DumpAll=True inputBSFile= %IN tmpESD=tmpESD.pool.root outputNTUP_L1TGCFile=%OUT.physics.root DBRelease=%DB:LATEST"

稲丸 CW の評価

- こうやって投げた job の結果から正しく coincidence が取れてい るかを check
- Fill した条件
- * TGC_coin_pt
 - 1. TGC_coin_bunch == 2 // current bunch
 - 2. TGC_coin_type == 2 // SL trigger
 - 3. 5 <= TGC_coin_pt // PT5 or PT6
- * trig_L1_mu_thrNumber
 - 1. 0 < trig_L1_mu_source // SL trigger (not Barrel trigger)
 - 2. 5 <= trig_L1_mu_thrNumber // PT5 or PT6

without CW

 まず、coincidence をかけていない状態で trig_L1_mu_thrNumber と TGC_coin_pt が一致することの確認

with CW

 CW 無しで TGC_coin と trig_L1_mu が一致することが確かめら れたので、CW でどれだけ削減されるかを確かめる

稻丸 CW

	PT5	PT6
cut無し	50551	127070
以前のCW	33670	73687
稻丸CW	28421	71379

稲丸 CW の方が Trigger を落としている。 efficiency がどうなるのかが気になるところ

現在進めていること

- offline 情報(staco)で associate 出来る Trigger がどれだけかの見積もり
- この際に TGC_coin_* には eta, phi の情報はないので、trig_L1_mu_eta, phi の情報を使う
- しかし、TGC_coin_*の情報には bunch 情報(previous, current, next) など trig_L1_mu_* に 含まれていない情報もあるため、TGC_coin_* の trigger と trig_L1_mu_* の trigger の対応が正し くなるようにしないといけない。

D3PD に 稲丸 CW

D3PD に対して稲丸 CW をかける Tool は現在
 Debug 中です

https://svnweb.cern.ch/cern/wsvn/atlas-tkunigo/tkunigo/TILE/EIFIcoin/?

- ところどころに Bug があったので、Bug を見 つけたら稲丸さんに確認をとってという作業を 続けてい
- 大分完成に近づいているはずです

Pileup Noise Study

- TILE Calo の <μ> に対する noise は 現在ある程度低い <μ> については実際の Run から出されているが、
 20 < μ の領域ではMC で計算されている
- この絵のうち、MC で計算されている領域に数個でいいので実際の Run から点を打ってみたかった
- だが、in-time の寄与しか見えないので断念。確認のために、mu = 10 程度の普通の run で見たらただしく
 plot 上にのることが確かめられた

TILE Energy 0の peak

- 本題とはそれるが TILE Energy 0 付近に peak がたってしまう。(絵は backup)なぜ だろう?
 - * PMTのLow Gain由来?

Low Gain の Signal を除いても peak は残った(先週)

* Dead Module 由来?

TILE の A-side, C-side それぞれにある Dead Module が原因 ではないか?(今週: 次のページ)

D6A

• D6A cell の Energy が | D6A_E | < 0.5 の時の TILE Module を Fill してみた

Module 0 による event は少ないことは気になるが、Dead Module 由来 の event が特別多いということはない。(D5A, D5C, D6A, D6C 全てにつ いて同様) 原因が何か思いついた時に調べてみたい。

To Do

• <u>TILE muon のオペレーションモード</u>

- * 稲丸 coincidence の検証
- * Tool の作成・debug

• <u>SLの動作理解</u>

- * SL verilogコードの理解
- * TX2 for PT6 の verilog コード作成

- ◆ (TILEにDead Moduleが出来たときの対処法)
- ◆ (TILE Energy 0 付近に peak がたつことの原因)

backup

Efficiency & Rate Reduction

D6 only reduction

 1.2 < |eta| < 1.3 の region には D6 を individual に使って、判定をおこなってみる

Run 情報

今まで使ってきた Run は 3つ

- + run 216399 Peak < μ > = 11.4 (10 < mu)
- + run 216416 Peak < μ > = 11.9 (10.5<mu)
- + run 216432 Peak < μ > = 9.93 (9.0 < mu)
- それぞれの run の中から <µ> が Peak に近い Lumi Block の情報のみを Fill する

Pileup Noise

よさそう

Gain

